SEPIA: A real-time expert system that automates train route management

1996 ◽  
Vol 4 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Y. Larroche ◽  
R. Moulin ◽  
D. Gauyacq
1994 ◽  
Vol 27 (12) ◽  
pp. 977-982
Author(s):  
Y. Larroche ◽  
R. Moulin ◽  
D. Gauyacq

2012 ◽  
Vol 12 (5) ◽  
pp. 699-706 ◽  
Author(s):  
B. S. Marti ◽  
G. Bauser ◽  
F. Stauffer ◽  
U. Kuhlmann ◽  
H.-P. Kaiser ◽  
...  

Well field management in urban areas faces challenges such as pollution from old waste deposits and former industrial sites, pollution from chemical accidents along transport lines or in industry, or diffuse pollution from leaking sewers. One possibility to protect the drinking water of a well field is the maintenance of a hydraulic barrier between the potentially polluted and the clean water. An example is the Hardhof well field in Zurich, Switzerland. This paper presents the methodology for a simple and fast expert system (ES), applies it to the Hardhof well field, and compares its performance to the historical management method of the Hardhof well field. Although the ES is quite simplistic it considerably improves the water quality in the drinking water wells. The ES knowledge base is crucial for successful management application. Therefore, a periodic update of the knowledge base is suggested for the real-time application of the ES.


1992 ◽  
Vol 29 (1) ◽  
pp. 79-84
Author(s):  
Joey B. Flanders ◽  
Charles H. Jones ◽  
Robin M. Madison
Keyword(s):  

Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 1
Author(s):  
Roberto Melli ◽  
Enrico Sciubba

This paper presents a critical and analytical description of an ongoing research program aimed at the implementation of an expert system capable of monitoring, through an Intelligent Health Control procedure, the instantaneous performance of a cogeneration plant. The expert system is implemented in the CLIPS environment and is denominated PROMISA as the acronym for Prognostic Module for Intelligent System Analysis. It generates, in real time and in a form directly useful to the plant manager, information on the existence and severity of faults, forecasts on the future time history of both detected and likely faults, and suggestions on how to control the problem. The expert procedure, working where and if necessary with the support of a process simulator, derives from the available real-time data a list of selected performance indicators for each plant component. For a set of faults, pre-defined with the help of the plant operator (Domain Expert), proper rules are defined in order to establish whether the component is working correctly; in several instances, since one single failure (symptom) can originate from more than one fault (cause), complex sets of rules expressing the combination of multiple indices have been introduced in the knowledge base as well. Creeping faults are detected by analyzing the trend of the variation of an indicator over a pre-assigned interval of time. Whenever the value of this ‘‘discrete time derivative’’ becomes ‘‘high’’ with respect to a specified limit value, a ‘‘latent creeping fault’’ condition is prognosticated. The expert system architecture is based on an object-oriented paradigm. The knowledge base (facts and rules) is clustered—the chunks of knowledge pertain to individual components. A graphic user interface (GUI) allows the user to interrogate PROMISA about its rules, procedures, classes and objects, and about its inference path. The paper also presents the results of some simulation tests.


2013 ◽  
Vol 791-793 ◽  
pp. 874-877
Author(s):  
Yan Song Zhang ◽  
Hui Feng Zhang ◽  
Wei Ye ◽  
Chao Jiang Wang ◽  
Zhen Dong Xu

In order to meet the trend for flight test technology, this paper presents a monitoring expert system of flight parameters based on embedded technology , which can achieve real-time interpretation of flight data air and provide the parameters for the AHRS, engines, flight controls for aircraft crew members as well as the disposal of the special circumstances operating. It can be used for real-time collection and record a variety of digital information, control information and video information transmitting by the missiles and fiber during the fly testing process.


2015 ◽  
Author(s):  
Νικόλαος Κατσιώτης

Στην παρούσα Διδακτορική Διατριβή παρουσιάζεται η διερεύνηση των δυνατοτήτων συμβολής μεθόδων μη-καταστρεπτικού ελέγχου στη διάγνωση και στον έλεγχο ποιότητας δομικών υλικών με έμφαση στην Αειφόρο Κατασκευή. Ως προς το παραπάνω σκοπό, πραγματοποιήθηκε εκτενής μελέτη των υπό έρευνα δομικών υλικών (δοκιμίων σκυροδεμάτων 5 συνθέσεων, έκαστη σύνθεση αποτελούμενη από διαφορετικό τύπο, ποιότητα και κατηγορία αντοχών του περιεχόμενου τσιμέντου) μέσω τόσο συμβατικών/παραδοσιακών (καταστρεπτικών) τεχνικών ανάλυσης όσο και καινοτόμων μη-καταστρεπτικών τεχνικών χαρακτηρισμού.Η μέθοδος που αναπτύχθηκε στα πλαίσια της παρούσας Διδακτορικής Διατριβής αφορά την συνδυαστική και συνεργατική εφαρμογή των μη-καταστρεπτικών τεχνικών της Μικροσκοπίας Οπτικών Ινών και της Ψηφιακής Επεξεργασίας Εικόνας. Περισσότερο συγκεκριμένα, παρασκευάσθηκαν δοκίμια σκυροδεμάτων στον ξυλότυπο (“καλούπι”) των οποίων είχε προσαρμοστεί κατάλληλο πλαίσιο (“παράθυρο”) παρατήρησης και λήψης εικόνων μέσω του οποίου εφαρμόστηκε Μικροσκοπία Οπτικών Ινών σε τακτά διαστήματα πραγματικού χρόνου (“real-time”) κατά την διάρκεια της τοποθέτησης/σκυροδέτησης αυτών. Εν συνεχεία, οι εικόνες υφής αυτές επεξεργάστηκαν κατάλληλα μέσω αλγορίθμου Ψηφιακής Επεξεργασίας Εικόνας (ο οποίος αναπτύχθηκε και αριστοποιήθηκε για τις ανάγκες της συγκεκριμένης Έρευνας και εφαρμογής) σε υπολογιστικό περιβάλλον MatLab®, και εξήχθησαν ποσοτικές πληροφορίες χαρακτηρισμού της δεδομένης εικόνας ανά χρονική στιγμή λήψης αυτής.Τα πειραματικά αποτελέσματα αυτά τροφοδοτήθηκαν αυτομάτως (και σε πραγματικό χρόνο - “real-time”) σε κατάλληλη πληροφοριακή γνωσιακή βάση δεδομένων, η οποία αποτέλεσε το έναυσμα για περαιτέρω αξιοποίηση των περιεχόμενων πληροφοριών, υπό την μορφή εύρεσης και έκφρασης κατάλληλου μαθηματικού συσχετισμού (“correlation”). Εν συνεχεία και βάσει του αναπτυχθέντος ημιεμπειρικού μαθηματικού μοντέλου, έλαβε χώρα μετάβαση σε έμπειρο σύστημα υποστήριξης απόφασης (“expert system”), ικανό να ανταποκρίνεται στις ανάγκες της Κατασκευής (σε πραγματικό τόπο, χρόνο και κλίμακα).Στα Συμπεράσματα της παρούσας Διδακτορικής Διατριβής συμπεριλαμβάνεται η επιτυχής συνδυαστική αξιοποίηση μη-καταστρεπτικών τεχνικών Μικροσκοπίας Οπτικών Ινών και Ψηφιακής Επεξεργασίας Εικόνας ως προς την λήψη αντιπροσωπευτικών επιφανειακών εικόνων υφής/μικροδομής (“image patterns”) σε ορισμένες χρονικές στιγμές αμέσως μετά την έναρξη της σκυροδέτησης (αρχή,+ 5, +10, +15, +20, +25, +30, +40, +50, 60λεπτά). Οι ληφθείσες ψηφιακά επεξεργασμένες εικόνες μικροδομής συσχετίστηκαν (μέσω εκτεταμένου προγράμματος γραμμικών παλινδρομήσεων) με τις τελικές μηχανικές αντοχές των παραχθέντων σκυροδεμάτων και συμπεραίνεται η εντονότερη βαρύτητα/σχέση των μορφολογικών παραμέτρων του “κεντροειδούς” και του “αριθμού Euler” (καθόλες τις χρονικές στιγμές), σε μεγέθυνση 25x και όριο κατωφλίωσης/threshold 110. Πέραν αυτών, η αποτίμηση της μικροδομής από τα ληφθέντα image pattern ενσωματώνεται επιτυχώς σε εξειδικευμένη γνωσιολογική βάση δεδομένων και η Γνώση αυτή μετατρέπεται (μέσω τεχνητής νοημοσύνης και εφαρμογής γενετικών αλγορίθμων σε περιβάλλον MatLab®) σε έμπειρο σύστημα (“expert system”) υποβοήθησης/υποστήριξης αποφάσεων (“decision support system”) Αειφορίας στην Κατασκευή.


Sign in / Sign up

Export Citation Format

Share Document