BOUNDARY VALUE PROBLEMS FOR PAIRS OF ORDINARY DIFFERENTIAL OPERATORS

Author(s):  
Earl A. Coddington
1995 ◽  
Vol 18 (4) ◽  
pp. 789-797 ◽  
Author(s):  
T. Gnana Bhaskar ◽  
M. Venkatesulu

An algorithm for the computation of Green's matrices for boundary value problems associated with a pair of mixed linear regular ordinary differential operators is presented and two examples from the studies of acoustic waveguides in ocean and transverse vibrations in nonhomogeneous strings are discussed.


2020 ◽  
Vol 28 (2) ◽  
pp. 237-241
Author(s):  
Biljana M. Vojvodic ◽  
Vladimir M. Vladicic

AbstractThis paper deals with non-self-adjoint differential operators with two constant delays generated by {-y^{\prime\prime}+q_{1}(x)y(x-\tau_{1})+(-1)^{i}q_{2}(x)y(x-\tau_{2})}, where {\frac{\pi}{3}\leq\tau_{2}<\frac{\pi}{2}<2\tau_{2}\leq\tau_{1}<\pi} and potentials {q_{j}} are real-valued functions, {q_{j}\in L^{2}[0,\pi]}. We will prove that the delays and the potentials are uniquely determined from the spectra of four boundary value problems: two of them under boundary conditions {y(0)=y(\pi)=0} and the remaining two under boundary conditions {y(0)=y^{\prime}(\pi)=0}.


2007 ◽  
Vol 2007 ◽  
pp. 1-27 ◽  
Author(s):  
Veli B. Shakhmurov

The nonlocal boundary value problems for regular degenerate differential-operator equations with the parameter are studied. The principal parts of the appropriate generated differential operators are non-self-adjoint. Several conditions for the maximal regularity uniformly with respect to the parameter and the Fredholmness in Banach-valuedLp−spaces of these problems are given. In applications, the nonlocal boundary value problems for degenerate elliptic partial differential equations and for systems of elliptic equations with parameters on cylindrical domain are studied.


Author(s):  
Б.В. Семисалов

Предложен метод численного решения краевых задач Неймана-Дирихле для уравнений эллиптического типа, обеспечивающий достижение требуемой точности с низким расходом памяти и машинного времени. Метод адаптирует свойства наилучших полиномиальных приближений для построения быстросходящихся алгоритмов без насыщения на основе нелокальных чебышевских приближений. Предложен новый подход к аппроксимации дифференциальных операторов и решению полученных задач линейной алгебры. Даны оценки погрешности численного решения. Обоснован и установлен экспериментально высокий порядок сходимости предложенного метода в задачах с $C^r$-гладкими и $C^{\infty}$-гладкими решениями. Получены выражения элементов массивов, аппроксимирующих операторы производных в задачах с различными граничными условиями. Эти выражения позволят читателю быстро реализовать метод с нуля. A method for searching numerical solutions to Neumann-Dirichlet boundary value problems for differential equations of elliptic type is proposed. This method allows reaching a desired accuracy with low consumption of memory and computer time. The method adapts the properties of best polynomial approximations for construction of algorithms without saturation on the basis of nonlocal Chebyshev approximations. A new approach to the approximation of differential operators and to solving the resulting problems of linear algebra is also proposed. Estimates of numerical errors are given. A high convergence rate of the proposed method is substantiated theoretically and is shown numerically in the case of problems with $C^r$-smooth and $C^{\infty}$-smooth solutions. Expressions for arrays approximating the differential operators in problems with various types of boundary conditions are obtained. These expressions allow the reader to quickly implement the method from scratch.


Sign in / Sign up

Export Citation Format

Share Document