Polymer Synthesis and Processing

Author(s):  
Mahadevappa Y. Kariduraganavar ◽  
Arjumand A. Kittur ◽  
Ravindra R. Kamble
Author(s):  
Charles W. Manke ◽  
Esin Gulari

Use of supercritical fluids (SCFs), particularly supercritical carbon dioxide, as alternative solvents in polymer synthesis and processing is a rapidly growing research area with successful industrial applications (McCoy, 1999). In some cases, the need for alternative solvents is based on environmental concerns, with regulations mandating replacement solvents. An environmentally mandated example is the 1995 ban of the use of chlorofluorocarbons (CFCs) as physical blowing agents in the manufacture of polymeric foams after CFCs were classified as class-I-ozone-depleting substances (ODPs). Among the alternative blowing agents are gases like CO2 and N2 and refrigerants such as 1,1-difluoroethane (R152a) and 1,1,1,2-tetrafluoroethane (R134a). Under the foaming conditions, at temperatures above the glass transition temperature of a polymer, and at pressures required for flow of highly viscous polymer melts, these alternative blowing agents are frequently supercritical. When polymers are formed into final products by various melt-processing techniques, such as extrusion, injection molding, blow molding, foaming, and spin-coating, extremely high melt viscosity presents a major difficulty. A common method to moderate the processing conditions is to add a liquid solvent or plasticizer to the melt. Solvents and plasticizers lower the glass transition temperature, Tg, of the polymer so that the polymer can be made to flow at lower pressures and temperatures. Replacing liquid solvents with SCFs presents unique processing advantages. Higher diffusivity and lower viscosity of SCFs, compared with liquid solvents, increase rates of dissolution and mixing. The properties of polymer–SCF solutions are tunable via pressure or temperature changes, thus allowing efficient downstream separations. Most importantly, dissolution of an SCF produces very large reductions in melt viscosity compared with a liquid solvent dissolved in the melt. Whether the interest in using SCFs in polymer synthesis and processing is driven by environmental concerns or processing advantages, it is important to understand the rheological behavior of polymer–SCF mixtures. In this chapter, we describe rheological measurements of polymer melts containing dissolved gases for two polymers, polydimethylsiloxane (PDMS) swollen with CO2 at 50 °C and 80 °C and polystyrene (PS) swollen with CO2, R152a, and R134a at 150 °C and 175 °C.


2013 ◽  
pp. 55-67
Author(s):  
A Naumkin ◽  
A Krasnov ◽  
E Said-galiev ◽  
A Nikolaev ◽  
I Volkov ◽  
...  

2000 ◽  
Vol 5 (2) ◽  
pp. 92-95 ◽  
Author(s):  
David R. Tyler ◽  
David C. Johnson ◽  
Michael M. Haley

2021 ◽  
Author(s):  
Alexander Banger ◽  
Julian Sindram ◽  
Marius Otten ◽  
Jessica Kania ◽  
Alexander Strzelczyk ◽  
...  

We present the synthesis of so called amphiphilic glycomacromolecules (APGs) by using solid-phase polymer synthesis. Based on tailor made building blocks, monosdisperse APGs with varying compositions are synthesized, introducing carbohydrate...


Sign in / Sign up

Export Citation Format

Share Document