glass transition
Recently Published Documents


TOTAL DOCUMENTS

10217
(FIVE YEARS 1141)

H-INDEX

179
(FIVE YEARS 13)

2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Paula A. Gago ◽  
Stefan Boettcher

The grain-scale dynamics of the internal energy inside a tapped granular pile is studied, advancing on a kinetic theory of grains.


2022 ◽  
Vol 05 ◽  
Author(s):  
Wanda Jones ◽  
Bedanga Sapkota ◽  
Brian Simpson ◽  
Tarig A. Hassan ◽  
Shaik Jeelani ◽  
...  

Background: Thermoplastic expandable microspheres (TEMs) are spherical particles that consist of polymer shell encapsulating a low boiling point liquid hydrocarbon that acts as the blowing agent. When TEMs are heated at 80-190 C, the polymer shell softens and the hydrocarbon gasifies, causing the microspheres expand leading to increase in volume and decrease in density. TEMs are used in food packaging, elastomeric cool roof coatings, shoe soles, fiber and paper board, and various applications in the automotive industry. It is noted that TEMs are known by its brand name ‘Expancel’ which is also used to refer TEMs in this paper. Objective: The objective of this work was to develop and characterize forms prepared from TEMs with/without carbon nanofibers (CNFs) coatings to study the effect of CNFs on structural, thermal, and mechanical properties. Method: Sonochemical method was used to coat TEMs with various weight percentage (1, 2, and 3 %) of CNF. Neat foam (without CNF) and composite foams (TEMs coated with various wt.% of CNF) were prepared by compression molding the TEMs and TEMs-CNF composites powders. Thermal and mechanical properties of the neat and composite foams were investigated. Result: The mechanical properties of the composite foam were notably improved, which is exhibited by a 54% increase in flexural modulus and a 6% decrease in failure strain with the TEMs-(2 wt.% CNF) composite foam as compared to the neat foam. Improvement in thermal properties of composite foam was demonstrated by a 38% increase in thermal stability at 800 ºC with the TEMs-(1 wt.% CNF) composite foam as compared to the neat foam. However, no change in glass transition of TEMs was observed with the CNF coating. SEM-based analysis revealed that CNFs were well dispersed throughout the volume of the TEMs matrix forming a strong interface. Conclusions: Straightforward sonochemical method successfully triggered efficient coating of TEMs with CNFs resulting to strong adhesion interface. The mechanical properties of composite foams increased up to 2% of CNFs coating and then decreased with the higher coating presumably due to interwoven bundles and aggregation of CNFs, which might have acted as critical flaws to initiate and propagate cracking. Thermal properties of foams increased with the CNFs coating while no change in glass transition temperature was observed due to coating.


Author(s):  
Minh Triet Dang ◽  
Luka Gartner ◽  
Peter Schall ◽  
Edan Lerner

Abstract Free energy is a key thermodynamic observable that controls the elusive physics of the glass transition. However, measuring the free energy of colloidal glasses from microscopy images is challenging due to the difficulty of measuring the individual particle size in the slightly polydisperse glassy systems. In this paper, we carry out experiments and numerical simulations of colloidal glasses with the aim to find a practical approach to measure the free energy from colloidal particles at mild polydispersity. We propose a novel method which requires only the particle coordinates from a few confocal microscopy snapshots to estimate the average particle diameter and use it as an input for our experimental free energy measurements. We verify our free energy calculations from Cell Theory with the free energy obtained by Thermodynamic Integration. The excellent agreement between the free energies measured using the two methods close to the glass transition packing fraction highlights the dominant role played by \emph{vibrational} entropy in determining a colloidal glass's free energy. Finally, the noticeable free energy difference calculated from uniform and conjectured particle sizes emphasizes the sensitivity on particle free volumes when measuring free energy in the slightly polydisperse colloidal glass.


Author(s):  
D. X. Li ◽  
Yusei Shimizu ◽  
A Nakamura ◽  
Yoshiki J Sato ◽  
A Maurya ◽  
...  

Abstract It is unexpected that a spin-glass transition, which generally occurs only in system with some form of disorder, was observed in the ThCr2Si2-type compound PrAu2Si2 at a temperature of 3 K. This puzzling phenomenon was later explained based on a novel dynamic frustration model that does not involve static disorder. We present the results of re-verification of the reported spin-glass behaviors by measuring the physical properties of three polycrystalline PrAu2Si2 samples annealed under different conditions. Indeed, in the sample annealed at 827 ◦C for one week, a spin-glass transition does occur at a temperature of T f~2.8 K as that reported previously in the literature. However, it is newly found that the spin-glass effect is actually more pronounced in the as-cast sample, and almost completely disappears in the well-annealed (at 850 ◦C for 4 weeks) sample. The annealing effect observed in PrAu2Si2, that is, spin glass to paramagnetism transition is discussed by comparing with earlier results reported on the same system and other isomorphic compounds.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 254
Author(s):  
Fan Yang ◽  
Meng Zhao ◽  
Darren Smith ◽  
Peggy Cebe ◽  
Sam Lucisano ◽  
...  

The synthesis of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate, its polymerization, and ion exchange to yield a trio of 1-butyl-2,3-dimethyl-4-vinylimidazolium polymers is described. Irrespective of the nature of the anion, substitution at the 2-position of the imidazolium moiety substantially increases the distance between the anion and cation. The methyl substituent at the 2-position also served to expose the importance of H-bonding for the attractive potential between imidazolium moiety and anions in polymers without a methyl group at the 2-position. The thermal characteristics of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) salts and corresponding poly(1-ethyl-3-methyl-4-vinylimidazolium) salts were evaluated. While the mid-point glass transition temperatures, Tg-mid, for 1-ethyl-3-methyl-4-vinylimidazolium polymers with CF3SO3−, (CF3SO2)2N− and PF6− counterions, were 153 °C, 88 °C and 200 °C, respectively, the Tg-mid values for 1-butyl-2,3-dimethyl-4vinylimidazolium polymers with corresponding counter-ions were tightly clustered at 98 °C, 99 °C and 84 °C, respectively. This dramatically reduced influence of the anion type on the glass transition temperature was attributed to the increased distance between the center of the anions and cations in the 1-butyl-2,3-dimethyl-4-vinylimidazolium polymer set, and minimal H-bonding interactions between the respective anions and the 1-butyl-2,3-dimethyl-4-vinylimidazolium moiety. It is believed that this is the first observation of substantial independence of the glass transition of an ionic polymer on the nature of its counterion.


2022 ◽  
Vol 12 ◽  
Author(s):  
José J. Benítez ◽  
Ana González Moreno ◽  
Susana Guzmán-Puyol ◽  
José A. Heredia-Guerrero ◽  
Antonio Heredia ◽  
...  

Two important biophysical properties, the thermal and UV-Vis screening capacity, of isolated tomato fruit cuticle membranes (CM) have been studied by differential scanning calorimetry (DSC) and UV-Vis spectrometry, respectively. A first order melting, corresponding to waxes, and a second order glass transition (Tg) thermal events have been observed. The glass transition was less defined and displaced toward higher temperatures along the fruit ripening. In immature and mature green fruits, the CM was always in the viscous and more fluid state but, in ripe fruits, daily and seasonal temperature fluctuations may cause the transition between the glassy and viscous states altering the mass transfer between the epidermal plant cells and the environment. CM dewaxing reduced the Tg value, as derived from the role of waxes as fillers. Tg reduction was more intense after polysaccharide removal due to their highly interwoven distribution within the cutin matrix that restricts the chain mobility. Such effect was amplified by the presence of phenolic compounds in ripe cuticle membranes. The structural rigidity induced by phenolics in tomato CMs was directly reflected in their mechanical elastic modulus. The heat capacity (Cprev) of cuticle membranes was found to depend on the developmental stage of the fruits and was higher in immature and green stages. The average Cprev value was above the one of air, which confers heat regulation capacity to CM. Cuticle membranes screened the UV-B light by 99% irrespectively the developmental stage of the fruit. As intra and epicuticular waxes contributed very little to the UV screening, this protection capacity is attributed to the absorption by cinnamic acid derivatives. However, the blocking capacity toward UV-A is mainly due to the CM thickness increment during growth and to the absorption by flavone chalconaringenin accumulated during ripening. The build-up of phenolic compounds was found to be an efficient mechanism to regulate both the thermal and UV screening properties of cuticle membranes.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 211
Author(s):  
Adrian Bele ◽  
Liyun Yu ◽  
Mihaela Dascalu ◽  
Daniel Timpu ◽  
Liviu Sacarescu ◽  
...  

Interpenetrating polymer networks (IPNs) represent an interesting approach for tuning the properties of silicone elastomers due to the possible synergism that may occur between the networks. A new approach is presented, which consists of mixing two silicone-based networks with different crosslinking pathways; the first network being cured by condensation route and the second network by UV curing. The networks were mixed in different ratios and the resulted samples yield good mechanical properties (improved elongations, up to 720%, and Young’s modulus, 1 MPa), thermal properties (one glass transition temperature, ~−123 °C), good dielectric strength (~50 V/μm), and toughness (63 kJ/m3).


Sign in / Sign up

Export Citation Format

Share Document