Organic Carbon Stocks in all Pools Following Land Cover Change in the Rainforest of Madagascar

Author(s):  
Mieja Razafindrakoto ◽  
Andry Andriamananjara ◽  
Tantely Razafimbelo ◽  
Jennifer Hewson ◽  
Riana H. Andrisoa ◽  
...  
2019 ◽  
Vol 11 (12) ◽  
pp. 1504 ◽  
Author(s):  
Jingyi Huang ◽  
Alfred E. Hartemink ◽  
Yakun Zhang

Soil organic carbon is a sink for mitigating increased atmospheric carbon. The international initiative “4 per 1000” aims at implementing practical actions on increasing soil carbon storage in soils under agriculture. This requires a fundamental understanding of the soil carbon changes across the globe. Several studies have suggested that the global soil organic carbon stocks (SOCS) have decreased due to global warming and land cover change, while others reported SOCS may increase under climate change and improved soil management. To better understand how a changing climate, land cover, and agricultural activities influence SOCS across large extents and long periods, the spatial and temporal variations of SOCS were estimated using a modified space-for-time substitution method over a 150-year period in the state of Wisconsin, USA. We used legacy soil datasets and environmental factors collected and estimated at different times across the state (169,639 km2) coupled with a machine-learning algorithm. The legacy soil datasets were collected from 1980 to 2002 from 550 soil profiles and harmonized to 0.30 m depth. The environmental factors consisted of 100-m soil property maps, 1-km annual temperature and precipitation maps, 250-m remote-sensing (i.e., Landsat)-derived yearly land cover maps and a 30-m digital elevation model. The model performance was moderate but can provide insights on understanding the impacts of different factors on SOCS changes across a large spatial and temporal extent. SOCS at the 0–0.30 m decreased at a rate of 0.1 ton ha−1 year−1 between 1850 and 1938 and increased at 0.2 ton ha−1 year−1 between 1980 and 2002. The spatial variation in SOCS at 0–0.30 m was mainly affected by land cover and soil types with the largest SOCS found in forest and wetland and Spodosols. The loss between 1850 and 1980 was most likely due to land cover change while the increase between 1980 and 2002 was due to best soil management practices (e.g., decreased erosion, reduced tillage, crop rotation and use of legume and cover crops).


2008 ◽  
Vol 91 (3-4) ◽  
pp. 317-334 ◽  
Author(s):  
James M. Eaton ◽  
Nicola M. McGoff ◽  
Kenneth A. Byrne ◽  
Paul Leahy ◽  
Ger Kiely

CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1217
Author(s):  
Manan Bhan ◽  
Simone Gingrich ◽  
Sarah Matej ◽  
Steffen Fritz ◽  
Karl-Heinz Erb

Tree cover (TC) and biomass carbon stocks (CS) are key parameters for characterizing vegetation and are indispensable for assessing the role of terrestrial ecosystems in the global climate system. Land use, through land cover change and land management, affects both parameters. In this study, we quantify the empirical relationship between TC and CS and demonstrate the impacts of land use by combining spatially explicit estimates of TC and CS in actual and potential vegetation (i.e., in the hypothetical absence of land use) across the global tropics (~23.4° N to 23.4° S). We find that land use strongly alters both TC and CS, with stronger effects on CS than on TC across tropical biomes, especially in tropical moist forests. In comparison to the TC-CS correlation observed in the potential vegetation (biome-level R based on tropical ecozones = 0.56–0.90), land use strongly increases this correlation (biome-level R based on tropical ecozones = 0.87–0.94) in the actual vegetation. Increased correlations are not only the effects of land cover change. We additionally identify land management impacts in closed forests, which cause CS reductions. Our large-scale assessment of the TC-CS relationship can inform upcoming remote sensing efforts to map ecosystem structure in high spatio-temporal detail and highlights the need for an explicit focus on land management impacts in the tropics.


2018 ◽  
Vol 94 ◽  
pp. 178-189 ◽  
Author(s):  
P.K.E. Pellikka ◽  
V. Heikinheimo ◽  
J. Hietanen ◽  
E. Schäfer ◽  
M. Siljander ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel R. Richards ◽  
Benjamin S. Thompson ◽  
Lahiru Wijedasa

Sign in / Sign up

Export Citation Format

Share Document