Introduction to the Blast Furnace Enthalpy Balance

2020 ◽  
pp. 59-63
Author(s):  
Ian Cameron ◽  
Mitren Sukhram ◽  
Kyle Lefebvre ◽  
William Davenport
1920 ◽  
Vol 1 (2supp) ◽  
pp. 184-184
Author(s):  
R. W. H. Atcherson
Keyword(s):  

1907 ◽  
Vol 64 (1659supp) ◽  
pp. 242-243
Author(s):  
Bradley Stoughton
Keyword(s):  

1900 ◽  
Vol 50 (1296supp) ◽  
pp. 20771-20772
Author(s):  
C. C. Longridge

1991 ◽  
Vol 88 (9) ◽  
pp. 905-911
Author(s):  
C.A.A. Jonker ◽  
J. Vermeij

2006 ◽  
Vol 103 (2) ◽  
pp. 76-81
Author(s):  
C. Perin Filho ◽  
D. Tassinari Miranda ◽  
E. Medeiros Milanez ◽  
E. Luiz Massanori Harano ◽  
E. Torres Bispo dos Santos ◽  
...  

2020 ◽  
Vol 118 (1) ◽  
pp. 106
Author(s):  
Lei Zhang ◽  
Jianliang Zhang ◽  
Kexin Jiao ◽  
Guoli Jia ◽  
Jian Gong ◽  
...  

The three-dimensional (3D) model of erosion state of blast furnace (BF) hearth was obtained by using 3D laser scanning method. The thickness of refractory lining can be measured anywhere and the erosion curves were extracted both in the circumferential and height directions to analyze the erosion characteristics. The results show that the most eroded positions located below 20# tuyere with an elevation of 7700 mm and below 24#–25# tuyere with an elevation of 8100 mm, the residual thickness here is only 295 mm. In the circumferential directions, the serious eroded areas located between every two tapholes while the taphole areas were protected well by the bonding material. In the height directions, the severe erosion areas located between the elevation of 7600 mm to 8200 mm. According to the calculation, the minimum depth to ensure the deadman floats in the hearth is 2581 mm, corresponding to the elevation of 7619 mm. It can be considered that during the blast furnace production process, the deadman has been sinking to the bottom of BF hearth and the erosion areas gradually formed at the root of deadman.


Sign in / Sign up

Export Citation Format

Share Document