Hyperellipsoidal Neural Network Trained With Extended Kalman Filter for Forecasting of Time Series

Author(s):  
Carlos Villaseñor
2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Ghassane Benrhmach ◽  
Khalil Namir ◽  
Abdelwahed Namir ◽  
Jamal Bouyaghroumni

Time series analysis and prediction are major scientific challenges that find their applications in fields as diverse as finance, biology, economics, meteorology, and so on. Obtaining the method with the least prediction error is one of the difficult problems of financial market and investment analysts. State space modelling is an efficient and flexible method for statistical inference of a broad class of time series and other data. The neural network is an important tool for analyzing time series especially when it is nonlinear and nonstationary. Essential tools for the study of Box-Jenkins methodology, neural networks, and extended Kalman filter were put together. We examine the use of the nonlinear autoregressive neural network method as a prediction technique for financial time series and the application of the extended Kalman filter algorithm to improve the accuracy of the model. As application on a real example, we are analyzing the time series of the daily price of steel over a 790-day period for establishing the superiority of this method over other existing methods. The simulation results using MATLAB and R software show that the model is capable of producing a reasonable accuracy.


Author(s):  
Luis J. Ricalde ◽  
Glendy A. Catzin ◽  
Alma Y. Alanis ◽  
Edgar N. Sanchez

This chapter presents the design of a neural network that combines higher order terms in its input layer and an Extended Kalman Filter (EKF)-based algorithm for its training. The neural network-based scheme is defined as a Higher Order Neural Network (HONN), and its applicability is illustrated by means of time series forecasting for three important variables present in smart grids: Electric Load Demand (ELD), Wind Speed (WS), and Wind Energy Generation (WEG). The proposed model is trained and tested using real data values taken from a microgrid system in the UADY School of Engineering. The length of the regression vector is determined via the Lipschitz quotients methodology.


Sign in / Sign up

Export Citation Format

Share Document