An Automatic System for Near-Real Time Flood Extent and Duration Mapping Based on Multi-Sensor Satellite Data

Author(s):  
Sandro Martinis ◽  
Marc Wieland ◽  
Michaela Rättich
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5865
Author(s):  
Abhnil Amtesh Prasad ◽  
Merlinde Kay

Solar energy production is affected by the attenuation of incoming irradiance from underlying clouds. Often, improvements in the short-term predictability of irradiance using satellite irradiance models can assist grid operators in managing intermittent solar-generated electricity. In this paper, we develop and test a satellite irradiance model with short-term prediction capabilities using cloud motion vectors. Near-real time visible images from Himawari-8 satellite are used to derive cloud motion vectors using optical flow estimation techniques. The cloud motion vectors are used for the advection of pixels at future time horizons for predictions of irradiance at the surface. Firstly, the pixels are converted to cloud index using the historical satellite data accounting for clear, cloudy and cloud shadow pixels. Secondly, the cloud index is mapped to the clear sky index using a historical fitting function from the respective sites. Thirdly, the predicated all-sky irradiance is derived by scaling the clear sky irradiance with a clear sky index. Finally, a power conversion model trained at each site converts irradiance to power. The prediction of solar power tested at four sites in Australia using a one-month benchmark period with 5 min ahead prediction showed that errors were less than 10% at almost 34–60% of predicted times, decreasing to 18–26% of times under live predictions, but it outperformed persistence by >50% of the days with errors <10% for all sites. Results show that increased latency in satellite images and errors resulting from the conversion of cloud index to irradiance and power can significantly affect the forecasts.


2021 ◽  
Author(s):  
Christos Kontopoulos ◽  
Nikos Grammalidis ◽  
Dimitra Kitsiou ◽  
Vasiliki Charalampopoulou ◽  
Anastasios Tzepkenlis ◽  
...  

&lt;p&gt;Nowadays, the importance of coastal areas is greater than ever, with approximately 10% of the global population living in these areas. These zones are an intermediate space between sea and land and are exposed to a variety of natural (e.g. ground deformation, coastal erosion, flooding, tornados, sea level rise, etc.) and anthropogenic (e.g. excessive urbanisation) hazards. Therefore, their conservation and proper sustainable management is deemed crucial both for economic and environmental purposes. The main goal of the Greece-China bilateral research project &amp;#8220;EPIPELAGIC: ExPert Integrated suPport systEm for coastaL mixed urbAn &amp;#8211; industrial &amp;#8211; critical infrastructure monitorinG usIng Combined technologies&amp;#8221; is the design and deployment of an integrated Decision Support System (DSS) for hazard mitigation and resilience. The system exploits near-real time data from both satellite and in-situ sources to efficiently identify and produce alerts for important risks (e.g. coastal flooding, soil erosion, degradation, subsidence), as well as to monitor other important changes (e.g. urbanization, coastline). To this end, a robust methodology has been defined by fusing satellite data (Optical/multispectral, SAR, High Resolution imagery, DEMs etc.) and in situ real-time measurements (tide gauges, GPS/GNSS etc.). For the satellite data pre-processing chain, image composite/mosaic generation techniques will be implemented via Google Earth Engine (GEE) platform in order to access Sentinel 1, Sentinel 2, Landsat 5 and Landsat 8 imagery for the studied time period (1991-2021). These optical and SAR composites will be stored into the main database of the EPIPELAGIC server, after all necessary harmonization and correction techniques, along with other products that are not yet available in GEE (e.g. ERS or Sentinel-1 SLC products) and will have to be locally processed. A Machine Learning (ML) module, using data from this main database will be trained to extract additional high-level information (e.g. coastlines, surface water, urban areas, etc.). Both conventional (e.g. Otsu thresholding, Random Forest, Simple Non-Iterative Clustering (SNIC) algorithm, etc.) and deep learning approaches (e.g. U-NET convolutional networks) will be deployed to address problems such as surface water detection and land cover/use classification. Additionally, in-situ or auxiliary/cadastral datasets will be used as ground truth data. Finally, a Decision Support System (DSS), will be developed to periodically monitor the evolution of these measurements, detect significant changes that may indicate impending risks and hazards, and issue alarms along with suggestions for appropriate actions to mitigate the detected risks. Through the project, the extensive use of Explainable Artificial Intelligence (xAI) techniques will also be investigated in order to provide &amp;#8220;explainable recommendations&amp;#8221; that will significantly facilitate the users to choose the optimal mitigation approach. The proposed integrated monitoring solutions is currently under development and will be applied in two Areas of Interest, namely Thermaic Gulf in Thessaloniki, Greece, and the Yellow River Delta in China. They are expected to provide valuable knowledge, methodologies and modern techniques for exploring the relevant physical mechanisms and offer an innovative decision support tool. Additionally, all project related research activities will provide ongoing support to the local culture, society, economy and environment in both involved countries, Greece and China.&lt;/p&gt;


Author(s):  
Lan Zhao ◽  
Shuang Wu ◽  
Rakesh Veeramacheneni ◽  
Carol X. Song ◽  
Larry Biehl
Keyword(s):  

2018 ◽  
Vol 246 ◽  
pp. 01100
Author(s):  
Jian Chen ◽  
Kai Shu ◽  
Jianping Wang ◽  
Chunhong Li ◽  
Feng Wang

It is very complicated to accurately describe the process of watershed runoff yield and concentration, which is comprehensive influenced by snow covering, temperature, precipitation, the wetland areas and other factors in the basin of Kaidu River upstream of Chahanwusu Reservoir. It is that real-time updating MODIS satellite snow cover products MOD10A2 and 30 meters by 30 meters of DEM data are applied to calculate elevation~ basin area ~ snow covering area curve, virtual free reservoir is put forward to simulate the wetlands concentration of upstream Bayinbuluke and sahentuohai hydrological gauge stations and mixed melting snow and runoff yield under saturated storage concentration model is constructed in this article. The model behaved good to simulate the Inflow process of Chahanwusu Reservoir, and the relative error between simulated and measured processes reached 83.79%, the deterministic coefficient reaches about 0.8, which is better supporting Chahanwusu Reservoir’s operation scheduling and dispatch decision.


2011 ◽  
Vol 44 (16) ◽  
pp. 2571-2581
Author(s):  
Xavier Muñoz-Berbel ◽  
Roger Escudé-Pujol ◽  
Núria Vigués ◽  
Montserrat Cortina-Puig ◽  
Cristina García-Aljaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document