Acquiring Stored or Real Time Satellite Data via Natural Language Query

Author(s):  
Xu Chen ◽  
Jin Liu ◽  
Xinyan Zhu ◽  
Ming Li
Author(s):  
Jaydeep Sen ◽  
Diptikalyan Saha ◽  
Ashish Mittal ◽  
Karthik Sankaranarayanan

Author(s):  
Xinfang Liu ◽  
Xiushan Nie ◽  
Junya Teng ◽  
Li Lian ◽  
Yilong Yin

Moment localization in videos using natural language refers to finding the most relevant segment from videos given a natural language query. Most of the existing methods require video segment candidates for further matching with the query, which leads to extra computational costs, and they may also not locate the relevant moments under any length evaluated. To address these issues, we present a lightweight single-shot semantic matching network (SSMN) to avoid the complex computations required to match the query and the segment candidates, and the proposed SSMN can locate moments of any length theoretically. Using the proposed SSMN, video features are first uniformly sampled to a fixed number, while the query sentence features are generated and enhanced by GloVe, long-term short memory (LSTM), and soft-attention modules. Subsequently, the video features and sentence features are fed to an enhanced cross-modal attention model to mine the semantic relationships between vision and language. Finally, a score predictor and a location predictor are designed to locate the start and stop indexes of the query moment. We evaluate the proposed method on two benchmark datasets and the experimental results demonstrate that SSMN outperforms state-of-the-art methods in both precision and efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Miaoyuan Shi

With the development of deep learning and its wide application in the field of natural language, the question and answer research of knowledge graph based on deep learning has gradually become the focus of attention. After that, the natural language query is converted into a structured query sentence to identify the entities and attributes in the user’s natural language query and the specified entities and attributes are used to retrieve answers to the knowledge graph. Using the advantage of deep learning in capturing sentence information, it incorporates the attention mechanism to obtain the semantic vector of the relevant attributes in the query and uses the parameter sharing mechanism to insert candidate attributes into the triple in the same model to obtain the semantic vector of typical candidates. The experiment measured that under the 100,000 RDF dataset, the single entity query of the MIQE model does not exceed 3 seconds, and the connection query does not exceed 5 seconds. Under the one-million RDF dataset, the single entity query of the MIQE model does not exceed 8 seconds, and the connection query will not be more than 10 seconds. Experimental data show that the system of knowledge-answering questions of engineering of intelligent construction based on deep learning has good horizontal scalability.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5865
Author(s):  
Abhnil Amtesh Prasad ◽  
Merlinde Kay

Solar energy production is affected by the attenuation of incoming irradiance from underlying clouds. Often, improvements in the short-term predictability of irradiance using satellite irradiance models can assist grid operators in managing intermittent solar-generated electricity. In this paper, we develop and test a satellite irradiance model with short-term prediction capabilities using cloud motion vectors. Near-real time visible images from Himawari-8 satellite are used to derive cloud motion vectors using optical flow estimation techniques. The cloud motion vectors are used for the advection of pixels at future time horizons for predictions of irradiance at the surface. Firstly, the pixels are converted to cloud index using the historical satellite data accounting for clear, cloudy and cloud shadow pixels. Secondly, the cloud index is mapped to the clear sky index using a historical fitting function from the respective sites. Thirdly, the predicated all-sky irradiance is derived by scaling the clear sky irradiance with a clear sky index. Finally, a power conversion model trained at each site converts irradiance to power. The prediction of solar power tested at four sites in Australia using a one-month benchmark period with 5 min ahead prediction showed that errors were less than 10% at almost 34–60% of predicted times, decreasing to 18–26% of times under live predictions, but it outperformed persistence by >50% of the days with errors <10% for all sites. Results show that increased latency in satellite images and errors resulting from the conversion of cloud index to irradiance and power can significantly affect the forecasts.


Author(s):  
Seonho Kim ◽  
Jungjoon Kim ◽  
Hong-Woo Chun

Interest in research involving health-medical information analysis based on artificial intelligence, especially for deep learning techniques, has recently been increasing. Most of the research in this field has been focused on searching for new knowledge for predicting and diagnosing disease by revealing the relation between disease and various information features of data. These features are extracted by analyzing various clinical pathology data, such as EHR (electronic health records), and academic literature using the techniques of data analysis, natural language processing, etc. However, still needed are more research and interest in applying the latest advanced artificial intelligence-based data analysis technique to bio-signal data, which are continuous physiological records, such as EEG (electroencephalography) and ECG (electrocardiogram). Unlike the other types of data, applying deep learning to bio-signal data, which is in the form of time series of real numbers, has many issues that need to be resolved in preprocessing, learning, and analysis. Such issues include leaving feature selection, learning parts that are black boxes, difficulties in recognizing and identifying effective features, high computational complexities, etc. In this paper, to solve these issues, we provide an encoding-based Wave2vec time series classifier model, which combines signal-processing and deep learning-based natural language processing techniques. To demonstrate its advantages, we provide the results of three experiments conducted with EEG data of the University of California Irvine, which are a real-world benchmark bio-signal dataset. After converting the bio-signals (in the form of waves), which are a real number time series, into a sequence of symbols or a sequence of wavelet patterns that are converted into symbols, through encoding, the proposed model vectorizes the symbols by learning the sequence using deep learning-based natural language processing. The models of each class can be constructed through learning from the vectorized wavelet patterns and training data. The implemented models can be used for prediction and diagnosis of diseases by classifying the new data. The proposed method enhanced data readability and intuition of feature selection and learning processes by converting the time series of real number data into sequences of symbols. In addition, it facilitates intuitive and easy recognition, and identification of influential patterns. Furthermore, real-time large-capacity data analysis is facilitated, which is essential in the development of real-time analysis diagnosis systems, by drastically reducing the complexity of calculation without deterioration of analysis performance by data simplification through the encoding process.


2021 ◽  
Author(s):  
Christos Kontopoulos ◽  
Nikos Grammalidis ◽  
Dimitra Kitsiou ◽  
Vasiliki Charalampopoulou ◽  
Anastasios Tzepkenlis ◽  
...  

&lt;p&gt;Nowadays, the importance of coastal areas is greater than ever, with approximately 10% of the global population living in these areas. These zones are an intermediate space between sea and land and are exposed to a variety of natural (e.g. ground deformation, coastal erosion, flooding, tornados, sea level rise, etc.) and anthropogenic (e.g. excessive urbanisation) hazards. Therefore, their conservation and proper sustainable management is deemed crucial both for economic and environmental purposes. The main goal of the Greece-China bilateral research project &amp;#8220;EPIPELAGIC: ExPert Integrated suPport systEm for coastaL mixed urbAn &amp;#8211; industrial &amp;#8211; critical infrastructure monitorinG usIng Combined technologies&amp;#8221; is the design and deployment of an integrated Decision Support System (DSS) for hazard mitigation and resilience. The system exploits near-real time data from both satellite and in-situ sources to efficiently identify and produce alerts for important risks (e.g. coastal flooding, soil erosion, degradation, subsidence), as well as to monitor other important changes (e.g. urbanization, coastline). To this end, a robust methodology has been defined by fusing satellite data (Optical/multispectral, SAR, High Resolution imagery, DEMs etc.) and in situ real-time measurements (tide gauges, GPS/GNSS etc.). For the satellite data pre-processing chain, image composite/mosaic generation techniques will be implemented via Google Earth Engine (GEE) platform in order to access Sentinel 1, Sentinel 2, Landsat 5 and Landsat 8 imagery for the studied time period (1991-2021). These optical and SAR composites will be stored into the main database of the EPIPELAGIC server, after all necessary harmonization and correction techniques, along with other products that are not yet available in GEE (e.g. ERS or Sentinel-1 SLC products) and will have to be locally processed. A Machine Learning (ML) module, using data from this main database will be trained to extract additional high-level information (e.g. coastlines, surface water, urban areas, etc.). Both conventional (e.g. Otsu thresholding, Random Forest, Simple Non-Iterative Clustering (SNIC) algorithm, etc.) and deep learning approaches (e.g. U-NET convolutional networks) will be deployed to address problems such as surface water detection and land cover/use classification. Additionally, in-situ or auxiliary/cadastral datasets will be used as ground truth data. Finally, a Decision Support System (DSS), will be developed to periodically monitor the evolution of these measurements, detect significant changes that may indicate impending risks and hazards, and issue alarms along with suggestions for appropriate actions to mitigate the detected risks. Through the project, the extensive use of Explainable Artificial Intelligence (xAI) techniques will also be investigated in order to provide &amp;#8220;explainable recommendations&amp;#8221; that will significantly facilitate the users to choose the optimal mitigation approach. The proposed integrated monitoring solutions is currently under development and will be applied in two Areas of Interest, namely Thermaic Gulf in Thessaloniki, Greece, and the Yellow River Delta in China. They are expected to provide valuable knowledge, methodologies and modern techniques for exploring the relevant physical mechanisms and offer an innovative decision support tool. Additionally, all project related research activities will provide ongoing support to the local culture, society, economy and environment in both involved countries, Greece and China.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document