Frequency-Shaped Large-Angle Maneuvers of Flexible Spacecraft

2014 ◽  
Vol 37 (3) ◽  
pp. 1027-1033 ◽  
Author(s):  
Ya’nan Yu ◽  
Xiuyun Meng ◽  
Keyong Li ◽  
Fenfen Xiong

Author(s):  
Jixiang Fan ◽  
Di Zhou

Dynamic equations describing the attitude motion of flexible spacecraft with scissored pairs of control moment gyroscopes are established. A nonlinear controller is designed to drive the flexible spacecraft to implement three-axis large-angle attitude maneuvers with the vibration suppression. Singularity analysis for three orthogonally mounted scissored pairs of control moment gyros shows that there exists no internal singularity in this configuration. A new pseudo-inverse steering law is designed based on the synchronization of gimbal angles of the twin gyros in each pair. To improve the synchronization performance, an adaptive nonlinear feedback controller is designed for each pairs of control moment gyros by using the stability theory of Lyapunov. Simulation results are provided to show the validity of the controllers and the steering law.


2016 ◽  
Vol 16 (02) ◽  
pp. 1450101 ◽  
Author(s):  
Morteza Shahravi ◽  
Milad Azimi

Presented herein is a new control approach for large angle attitude maneuver of flexible spacecraft. The singular perturbation theory (SPT) provides a useful tool for two time rate scale separation (mapping) of rigid and flexible body dynamics. The resulting slow and fast subsystems, enabling the use of two control approach for attitude (Modified Sliding Mode) and vibration Strain Rate Feedback (SRF) control of flexible spacecraft, respectively. An attractive feature of the present control approach is that the global stability of the entire system has been guaranteed while the controllers accomplished their tasks in coupled rigid/flexible dynamic domain without parasitic parameter interactions. Numerical simulations show the effectiveness of the present approach.


Author(s):  
Z Yu ◽  
Y Guo ◽  
L Wang ◽  
L Wu

This paper presents the large angle attitude manoeuvre control design of a single-axis flexible spacecraft system that consists of a central rigid body and a cantilever beam with bonded piezoelectric sensor/actuator pairs as a flexible appendage. The proposed control strategy combines the attitude controller designed by the adaptive robust control technique with the active vibration controller designed by the positive position feedback control method. The desired angular position of the spacecraft is planned and an adaptive robust attitude control approach based on a projection type adaptation law is proposed to track the planned path and to achieve precise attitude manoeuvre control. Meanwhile, the positive position feedback control method is applied to actively increase the damping of the flexible appendage and to suppress the residual vibration induced by manoeuvre. Improved transient and steady state performance during and after large angle attitude manoeuvre can be both achieved by integration of the technical merits of all these control methods. Analytical and numerical results illustrate the effectiveness of this approach.


1991 ◽  
Vol 25 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Peter M. Bainum ◽  
Feiyue Li

Sign in / Sign up

Export Citation Format

Share Document