rate feedback
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 31)

H-INDEX

30
(FIVE YEARS 2)

Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 24
Author(s):  
Fabio Celani

The purpose of this paper is to compare performances between stabilization algorithms of quaternion plus attitude rate feedback and rotation matrix plus attitude rate feedback for an Earth-pointing spacecraft with magnetorquers as the only torque actuators. From a mathematical point of view, an important difference between the two stabilizing laws is that only quaternion feedback can exhibit an undesired behavior known as the unwinding phenomenon. A numerical case study is considered, and two Monte Carlo campaigns are carried out: one in nominal conditions and one in perturbed conditions. It turns out that quaternion feedback compares more favorably in terms of the speed of convergence in both campaigns, and it requires less energy in perturbed conditions.


2021 ◽  
pp. 1-44

Abstract Arctic surface warming under greenhouse gas forcing peaks in winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) which captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity can alone produce the observed pattern of peak warming in early winter (shifting to late winter under increased forcing) by slowing the seasonal heating rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea-ice albedo and thermodynamic effects under CO2 forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positive winter lapse-rate feedback, due to cold initial surface temperatures and strong surface-trapped warming that are enabled by the albedo effects of sea ice alone. While many factors contribute to the seasonal pattern of Arctic warming, these results highlight changes in effective surface heat capacity as a central mechanism supporting this seasonality.


Children ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 1092
Author(s):  
Siren Rettedal ◽  
Joar Eilevstjønn ◽  
Amalie Kibsgaard ◽  
Jan Terje Kvaløy ◽  
Hege Ersdal

Background: Assessment of heart rate (HR) is essential during newborn resuscitation, and comparison of dry-electrode ECG technology to standard monitoring by 3-lead ECG and Pulse Oximetry (PO) is lacking. Methods: NeoBeat, ECG, and PO were applied to newborns resuscitated at birth. Resuscitations were video recorded, and HR was registered every second. Results: Device placement time from birth was median (quartiles) 6 (4, 18) seconds for NeoBeat versus 138 (97, 181) seconds for ECG and 152 (103, 216) seconds for PO. Time to first HR presentation from birth was 22 (13, 45) seconds for NeoBeat versus 171 (129, 239) seconds for ECG and 270 (185, 357) seconds for PO. Proportion of time with HR feedback from NeoBeat during resuscitation from birth was 85 (69, 93)%, from arrival at the resuscitation table 98 (85, 100)%, and during positive pressure ventilation 100 (95, 100)%. For ECG, these proportions were, 25 (0, 43)%, 28 (0, 56)%, and 33 (0, 66)% and for PO, 0 (0, 16)%, 0 (0, 16)%, and 0 (0, 18)%. All p < 0.0001. Conclusions: NeoBeat was faster to place, presented HR more rapidly, and provided feedback on HR for a larger proportion of time during ongoing resuscitation compared to 3-lead ECG and PO.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sergio A. Sejas ◽  
Xiaoming Hu ◽  
Ming Cai ◽  
Hanjie Fan

Energy budget decompositions have widely been used to evaluate individual process contributions to surface warming. Conventionally, the top-of-atmosphere (TOA) energy budget has been used to carry out such attribution, while other studies use the surface energy budget instead. However, the two perspectives do not provide the same interpretation of process contributions to surface warming, particularly when executing a spatial analysis. These differences cloud our understanding and inhibit our ability to shrink the inter-model spread. Changes to the TOA energy budget are equivalent to the sum of the changes in the atmospheric and surface energy budgets. Therefore, we show that the major discrepancies between the surface and TOA perspectives are due to non-negligible changes in the atmospheric energy budget that differ from their counterparts at the surface. The TOA lapse-rate feedback is the manifestation of multiple processes that produce a vertically non-uniform warming response such that it accounts for the asymmetry between the changes in the atmospheric and surface energy budgets. Using the climate feedback-response analysis method, we are able to decompose the lapse-rate feedback into contributions by individual processes. Combining the process contributions that are hidden within the lapse-rate feedback with their respective direct impacts on the TOA energy budget allows for a very consistent picture of process contributions to surface warming and its inter-model spread as that given by the surface energy budget approach.


2021 ◽  
Author(s):  
Yijun Zhao ◽  
Bing Li ◽  
Yuyang Li ◽  
Jing Zhou ◽  
Jiacheng Cao ◽  
...  

Author(s):  
Yoo Kyung Jang ◽  
Na Young Kim ◽  
Jeong Soo Lee ◽  
Hye Jung Shin ◽  
Hyoung Gyun Kim ◽  
...  

Patient-controlled epidural analgesia is widely used to control postoperative pain following major intra-abdominal surgeries. However, determining the optimal infusion dose that can produce effective analgesia while reducing side effects remains a task to be solved. Postoperative pain and adverse effects between variable-rate feedback infusion (VFIM group, n = 36) and conventional fixed-rate basal infusion (CFIM group, n = 36) of fentanyl/ropivacaine-based patient-controlled epidural analgesia were evaluated. In the CFIM group, the basal infusion rate was fixed (5 mL/h), whereas, in the VFIM group, the basal infusion rate was increased by 0.5 mL/h each time a bolus dose was administered and decreased by 0.3 mL/h when a bolus dose was not administered for 2 h. Patients in the VFIM group experienced significantly less pain at one to six hours after surgery than those in the CFIM group. Further, the number of patients who suffered from postoperative nausea was significantly lower in the VFIM group than in the CFIM group until six hours after surgery. The variable-rate feedback infusion mode of patient-controlled epidural analgesia may provide better analgesia accompanied with significantly less nausea in the early postoperative period than the conventional fixed-rate basal infusion mode following open gastrectomy.


2021 ◽  
Author(s):  
Lily Hahn ◽  
Kyle Armour ◽  
David Battisti ◽  
Ian Eisenman ◽  
Cecilia Bitz

Arctic surface warming under greenhouse gas forcing peaks in early winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) which captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity can alone produce the observed pattern of peak early winter warming by slowing the seasonal heating and cooling rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea-ice albedo and thermodynamic effects under CO2 forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positive winter lapse-rate feedback that persists with only the albedo effects of sea-ice loss prescribed, due to cold initial surface temperatures and strong surface-trapped warming. While many factors support peak early winter warming as Arctic sea ice declines, these results highlight changes in effective surface heat capacity as a central mechanism contributing to this seasonality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tino Stöckel ◽  
Robert Grimm

School physical education (PE) has the potential to contribute to public-health promotion and well-being, but oftentimes students' lack of motivation toward PE or physical activity in general, especially during adolescence, diminishes, or eradicates the positive effects associated with PE. Therefore, practical approaches are required that help teachers to increase or awake students intrinsic motivation toward PE, for which self-determination theory may provide the conceptual framework. In that regard, the purpose of the present study was to examine whether the use of real-time, heart rate feedback (as a method to support students' need for autonomy and competence) during regular PE lessons has the potential to increase students' autonomous motivation and physical effort. To achieve this, we had forty healthy adolescents between 16 and 17 years of age run for 30 min either with (experimental group, EG) or without (control group, CG) real-time, individualized heart rate feedback during a regular PE class and compared physical and perceived exertion as well as joy of running between the two groups. Participants were randomly assigned to the groups. Our data revealed that participants in the EG enjoyed running more than participants in the CG (joy of running was 3.20 in the EG vs. 2.63 in the CG, p = 0.03) despite a higher physical (163 to 178 in EG vs. 141 to 156 beats per minute in the CG, p &lt; 0.001) and perceived exertion (rating of perceived exertion of 13.22 in the EG vs. 10.59 in the CG, p = 0.02). That means, running with real-time, individualized heart rate feedback apparently increased participants' motivation to run and to enjoy running at higher levels of exertion. In that regard, real-time, individualized activity feedback should be implemented in regular PE classes systematically and repeatedly to create a controllable and attainable situation that allows students to actively adjust their own behavior to achieve appealing and realistic goals.


2021 ◽  
Author(s):  
Olivia Linke ◽  
Johannes Quaas

&lt;p&gt;The strong warming trend in the Arctic is mostly confined at the surface, and particularly evident during the cold season. The lapse rate feedback (LRF) stands out as one of the dominant causes of the Arctic amplification (besides the surface albedo feedback) given its differing response between high and lower latitudes. The LRF is the deviation from the uniform temperature change throughout the troposphere, and can thereby be quantified as the difference of tropospheric warming and surface warming. In the Arctic, it enforces a positive radiative feedback as the bottom-heavy warming is increasingly muted at higher altitudes, which has been suggested to relate to the lack of vertical mixing. In fact, climate model studies have recently identified more negative lapse rates for models with stronger inversions over large parts of the Arctic ocean, and snow-free land during winter.&lt;/p&gt;&lt;p&gt;Here we quantify individual components of the atmospheric energy balance to better understand the determination of the temperature lapse rate in the Arctic, which does not only interact with the surface albedo feedback, but also changes in atmospheric transport. A decomposition of the atmospheric energy budget is derived from the 6th phase of the Coupled Model Intercomparison Project (CMIP6), and concerns the radiation budgets, the transport divergence of heat and moisture, and the surface turbulent heat fluxes. Alterations of the budget components are obtained through pairs of model scenarios to simulate the impact of increasing atmospheric CO2 levels in an idealized setup.&lt;/p&gt;&lt;p&gt;The most notable features are the strongly opposing winter changes of the surface heat fluxes over regions of sea ice retreat and open Arctic ocean, and the interplay with the compensating energy transport divergence which can be linked to the near-surface air moist static energy in an energetic-diffusive perspective. We further aim to relate the changes of individual energetics to the temperature lapse rate in the Arctic to better understand and quantify the factors contributing to its evolution.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document