steering law
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 1)

Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 273
Author(s):  
Charalampos Papakonstantinou ◽  
Vaios Lappas ◽  
Vassilis Kostopoulos

This paper addresses the problem of singularity avoidance in a cluster of four Single-Gimbal Control Moment Gyroscopes (SGCMGs) in a pyramid configuration when used for the attitude control of a satellite by introducing a new gimballed control moment gyroscope (GCMG) cluster scheme. Four SGCMGs were used in a pyramid configuration, along with an additional small and simple stepper motor that was used to gimbal the full cluster around its vertical (z) axis. Contrary to the use of four variable-speed control moment gyroscopes (VSCMGs), where eight degrees of freedom are available for singularity avoidance, the proposed GCMG design uses only five degrees of freedom (DoFs), and a modified steering law was designed for the new setup. The proposed design offers the advantages of SGCMGs, such as a low weight, size, and reduced complexity, with the additional benefit of overcoming the internal elliptic singularities, which create a minor attitude error. A comparison with the four-VSCMG cluster was conducted through numerical simulations, and the results indicated that the GCMG design was considerably more efficient in terms of power while achieving a better gimbal configuration at the end of the simulation, which is essential when it is desired for different manoeuvres to be consecutively executed. Additionally, for a nano-satellite of a few kilograms, the results prove that it is feasible to manufacture the GCMG concept by using affordable and lightweight commercial off-the-shelf (COTS) stepper motors.


2021 ◽  
pp. 107051
Author(s):  
Anaïs Barles ◽  
Matteo Ceriotti ◽  
Francesco Ciampa ◽  
Leonard Felicetti

2021 ◽  
Author(s):  
He Zhu ◽  
Jingmei Huang ◽  
Jingji Wang ◽  
Xiao Liu ◽  
Junxiong Yin

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Javad Tayebi ◽  
Chao Han ◽  
Yuanjin Yu

Purpose The purpose of this paper is agile attitude control design with the novel three-dimensional (3D) magnetically suspended wheel (MSW) that is the preferred type for agile maneuvering compared to conventional control moment gyro due to frictionless, low vibration and long lifetime. This system does not require a separate steering law for pyramid arrangement to derive tilt angles. It is also conducting an agile maneuver with high accuracy despite the high-frequency disturbances. Design/methodology/approach In this paper, a disturbance observer-based attitude stabilization method is proposed for an agile satellite with a pyramid cluster of the novel 3D magnetically suspended wheel actuator. This strategy includes a disturbance observer and a linear quadratic regulator controller. The rotor shaft deflection of MSW is actively controlled to reduce vibration and producing gyro torque. The deflection angle of the pyramid cluster MSWs considered as control parameters. The closed-loop stability is proved by using the Lyapunov strategy. The efficiency and performance of the offered method verified by numerical simulation via MATLAB/SIMULINK software. Findings According to simulation results, the disturbance observer-based control controller stabilized the system with high accuracy and optimal tilt angles without any extra steering law equation. Hence, the system speed is increased, and the system error is minimized without separate steering law. Practical implications The magnetically suspended wheel is a new kind of inertia actuator for attitude control that has several benefits such as frictionless, high-speed rotor, clean environment and low vibration compared to the traditional wheel. It has complex nonlinear dynamics that cause have complicated controller design. The proposed strategy stabilizes the system and conducting an agile maneuver with high precision despite the high-frequency disturbances. It is applicable for some missions requiring high accuracies, like Earth observation and the solar observation mission that require a very accurate pointing control and a long lifetime. Originality/value This paper is the initial paper to design a pyramid array for magnetically suspended wheels. Compared to other research, this method doesn’t need a separate steering law of the MSWs cluster and presented optimal tilt angles with less computational. Also, it designs a disturbance observer-based controller for this system that proposed high accuracy and agile stabilization.


2021 ◽  
Vol 11 (10) ◽  
pp. 4505
Author(s):  
Takafumi Asao ◽  
Takeru Kobayashi ◽  
Kentaro Kotani ◽  
Satoshi Suzuki ◽  
Kazutaka Obama ◽  
...  

The purpose of this study is to construct a hands-free endoscopic surgical communication support system that can draw lines in space corresponding to head movements using AR technology and evaluate the applicability of the drawing motion by the head movement to the steering law, one of the HCI models, for the potential use during endoscopic surgery. In the experiment, the participants manipulated the cursor by using head movements through the pathway and movement time (MT); the number of errors and subjective evaluation of the difficulty of the task was obtained. The results showed that the head-movement-based line drawing manipulation was significantly affected by the tracking direction and by the task difficulty, shown as the Index of Difficulty (ID). There was high linearity between ID and MT, with a coefficient of determination R² of 0.9991. The Index of Performance was higher in the horizontal and vertical directions compared to diagonal directions. Although the weight and biocompatibility of the AR glasses must be overcome to make the current prototype a viable tool for supporting communication in the operating room environment, the prototype has the potential to promote the development of a computer-supported collaborative work environment for endoscopic surgery purposes.


2021 ◽  
Author(s):  
Sebastian Strasser ◽  
Simon Banville ◽  
Andreas Kvas ◽  
Sylvain Loyer ◽  
Torsten Mayer-Gürr

<p>Global navigation satellite system (GNSS) constellations such as GPS, GLONASS, Galileo, and BeiDou and the Japanese regional system QZSS apply various satellite attitude modes during eclipse season, which is the period when the Sun is close to the orbital plane of the satellite. Due to different satellite manufacturers and technological advances over time, these modes can vary between constellations but also between different satellite types within a constellation. For some constellations, namely Galileo and QZSS, the satellite attitude law has been officially published by the satellite operator. For most other GNSS satellite types, researchers have developed attitude models, for example using reverse kinematic precise point positioning, that approximate the actual attitude behaviour.</p><p>Outside of eclipse seasons, GNSS satellites generally apply either a nominal yaw-steering or an orbit normal attitude law. While both modes point the antennas towards Earth, the former yaws the satellite around the antenna axis to point the solar panels towards the Sun, while the latter always keeps a fixed yaw angle. When a satellite applying a yaw-steering law is in eclipse season and close to the orbit noon or midnight point, it may have to yaw faster than physically possible to keep the nominal attitude. The various attitude modes used by the satellites aim to prevent this scenario by applying a modified attitude law during this period, for example by yawing at a constant rate around orbit noon/midnight or by switching to orbit normal mode.</p><p>Comparisons of attitude files generated by analysis centers of the International GNSS Service (IGS) within the scope of its 3<sup>rd</sup> reprocessing campaign show significant differences in some cases. This contribution compares all available attitude models with the aim of finding similarities that allow for generalization, which in turn simplifies the implementation of the various attitude modes into GNSS software packages. The developed functions have been implemented into the open-source software GROOPS (https://github.com/groops-devs/groops), which makes them publicly available and documented.</p>


2020 ◽  
Vol 106 ◽  
pp. 106207
Author(s):  
Jitang Guo ◽  
Yunhai Geng ◽  
Baolin Wu ◽  
Xianren Kong

2020 ◽  
Vol 33 (10) ◽  
pp. 2728-2742
Author(s):  
Tao YI ◽  
Yunhai GENG ◽  
Baolin WU
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document