Diffusion of respiratory gases

Author(s):  
Andrew B Lumb
Keyword(s):  
1927 ◽  
Vol 74 (3) ◽  
pp. 553-556
Author(s):  
William F. Hamilton ◽  
Henry G. Barbour
Keyword(s):  

1962 ◽  
Vol 17 (1) ◽  
pp. 126-130
Author(s):  
Leon Bernstein ◽  
Chiyoshi Yoshimoto

The analyzer described was de signed for measuring the concentration of carbon dioxide in the bag of gas from which the subject rebreathes in the “rebreathing method” for estimating the tension of carbon dioxide in mixed venous blood. Its merits are that it is cheap, robust, simple to construct and to service, easy to operate, and accurate when used by untrained operators. (Medical students, unacquainted with the instrument, and working with written instructions only, obtained at their first attempt results accurate to within ±0.36% [sd] of carbon dioxide.) The instrument is suitable for use by nurse or physician at the bedside, and also for classes in experimental physiology. Some discussion is presented of the theoretical principles underlying the design of analyzers employing thermal conductivity cells. Submitted on July 13, 1961


2016 ◽  
Vol 6 (4) ◽  
pp. 180-188 ◽  
Author(s):  
Shoichiro Tanaka ◽  
Sachiko Iwata ◽  
Masahiro Kinoshita ◽  
Kennosuke Tsuda ◽  
Sayaka Sakai ◽  
...  

1966 ◽  
Vol 47 (4) ◽  
pp. 723-724 ◽  
Author(s):  
J. S. Hayward
Keyword(s):  

1955 ◽  
Vol 2 (1) ◽  
pp. 64 ◽  
Author(s):  
John J. Lane ◽  
James L. Wilding ◽  
John H. Rust ◽  
Bernard F. Trum ◽  
Joseph C. Schoolar

2008 ◽  
Vol 177 (1) ◽  
pp. 36-44 ◽  
Author(s):  
P.G. Turner ◽  
A. Dugdale ◽  
I.S. Young ◽  
S. Taylor

Water exchange between insects and their environment via the vapour phase includes influx and efflux components. The pressure cycle theory postulates that insects (and some other arthropods) can regulate the relative rates of influx and efflux of water vapour by modulating hydrostatic pressures at a vapour-liquid interface by compressing or expanding a sealed, gas-filled cavity. Some such cavities, like the tracheal system, could be compressed by elevated pressure in all or part of the haemocoele. Others, perhaps including the muscular rectum of flea prepupae, could be compressed by intrinsic muscles. Maddrell Insect Physiol . 8, 199 (1971)) suggested a pressure cycle mechanism of this kind to account for rectal uptake of water vapour in Thermobia but did not find it compatible with quantitative information then available. Newer evidence conforms better with the proposed mechanism. Cyclical pressure changes are of widespread occurrence in insects and have sometimes been shown to depend on water status. Evidence is reviewed for the role of the tracheal system as an avenue for net exchange of water between the insect and its environment. Because water and respiratory gases share common pathways, most published findings fail to distinguish between the conventional view that the tracheal system has evolved as a site for distribution and exchange of respiratory gases and that any water exchange occurring in it is generally incidental and nonadaptive, and the theory proposed here. The pressure cycle theory offers a supplementary explanation not incompatible with evidence so far available. The relative importance of water economy and respiratory exchange in the functioning of compressible cavities such as the tracheal system remains to be explored. Some further implications of the pressure cycle theory are discussed. Consideration is given to the possible involvement of vapour-phase transport in the internal redistribution of water within the body. It is suggested that some insect wings may constitute internal vapour-liquid exchange sites, where water can move from the body fluids to the intratracheal gas. Ambient and body temperature must influence rates of vapour-liquid mass transfer. If elevated body temperature promotes evaporative discharge of the metabolic water burden that has been shown to accumulate during flight in some large insects, their minimum threshold thoracic temperature for sustained flight may relate to the maintenance of water balance. The role of water economy in the early evolution of insect wings is considered. Pressure cycles might help to maintain water balance in surface-breathing insects living in fresh and saline waters, but the turbulence of the surface of the open sea might prevent truly marine forms from using this mechanism.


1985 ◽  
Vol 58 (3) ◽  
pp. 989-995 ◽  
Author(s):  
J. R. Torre-Bueno ◽  
P. D. Wagner ◽  
H. A. Saltzman ◽  
G. E. Gale ◽  
R. E. Moon

The relative roles of ventilation-perfusion (VA/Q) inequality, alveolar-capillary diffusion resistance, postpulmonary shunt, and gas phase diffusion limitation in determining arterial PO2 (PaO2) were assessed in nine normal unacclimatized men at rest and during bicycle exercise at sea level and three simulated altitudes (5,000, 10,000, and 15,000 ft; barometric pressures = 632, 523, and 429 Torr). We measured mixed expired and arterial inert and respiratory gases, minute ventilation, and cardiac output. Using the multiple inert gas elimination technique, PaO2 and the arterial O2 concentration expected from VA/Q inequality alone were compared with actual values, lower measured PaO2 indicating alveolar-capillary diffusion disequilibrium for O2. At sea level, alveolar-arterial PO2 differences were approximately 10 Torr at rest, increasing to approximately 20 Torr at a metabolic consumption of O2 (VO2) of 3 l/min. There was no evidence for diffusion disequilibrium, similar results being obtained at 5,000 ft. At 10 and 15,000 ft, resting alveolar-arterial PO2 difference was less than at sea level with no diffusion disequilibrium. During exercise, alveolar-arterial PO2 difference increased considerably more than expected from VA/Q mismatch alone. For example, at VO2 of 2.5 l/min at 10,000 ft, total alveolar-arterial PO2 difference was 30 Torr and that due to VA/Q mismatch alone was 15 Torr. At 15,000 ft and VO2 of 1.5 l/min, these values were 25 and 10 Torr, respectively. Expected and actual PaO2 agreed during 100% O2 breathing at 15,000 ft, excluding postpulmonary shunt as a cause of the larger alveolar-arterial O2 difference than accountable by inert gas exchange.


Sign in / Sign up

Export Citation Format

Share Document