3-D Graphical Simulation for Agile Modular Machine System

1998 ◽  
pp. 867-872
Author(s):  
Josef Adolfsson ◽  
Petter Olofsgrd ◽  
Philip Moore ◽  
Junsheng Pu
Author(s):  
Yuk L. Tsang ◽  
Alex VanVianen ◽  
Xiang D. Wang ◽  
N. David Theodore

Abstract In this paper, we report a device model that has successfully described the characteristics of an anomalous CMOS NFET and led to the identification of a non-visual defect. The model was based on detailed electrical characterization of a transistor exhibiting a threshold voltage (Vt) of about 120mv lower than normal and also exhibiting source to drain leakage. Using a simple graphical simulation, we predicted that the anomalous device was a transistor in parallel with a resistor. It was proposed that the resistor was due to a counter doping defect. This was confirmed using Scanning Capacitance Microscopy (SCM). The dopant defect was shown by TEM imaging to be caused by a crystalline silicon dislocation.


2006 ◽  
Vol 31 (11-12) ◽  
pp. 1198-1208 ◽  
Author(s):  
Chung-Feng Jeffrey Kuo ◽  
Cheng-Chih Tsai

Author(s):  
Dane A. Morey ◽  
Jesse M. Marquisee ◽  
Ryan C. Gifford ◽  
Morgan C. Fitzgerald ◽  
Michael F. Rayo

With all of the research and investment dedicated to artificial intelligence and other automation technologies, there is a paucity of evaluation methods for how these technologies integrate into effective joint human-machine teams. Current evaluation methods, which largely were designed to measure performance of discrete representative tasks, provide little information about how the system will perform when operating outside the bounds of the evaluation. We are exploring a method of generating Extensibility Plots, which predicts the ability of the human-machine system to respond to classes of challenges at intensities both within and outside of what was tested. In this paper we test and explore the method, using performance data collected from a healthcare setting in which a machine and nurse jointly detect signs of patient decompensation. We explore the validity and usefulness of these curves to predict the graceful extensibility of the system.


Author(s):  
Helmut Strasser

AbstractMutual adaptation and inter-changeability of system elements are very important prerequisites for machines, technical devices and products. Similar to that technical compatibility which can be achieved by standards and regulations, optimum design of human-oriented workplaces or a man-machine system cannot be attained without, e.g., a compatible arrangement of connected displays and controls. Over and above those stimulus/response relations, all technical elements and interfaces have to be designed in such a way that they do not exceed human capacity in order to optimize human well-being and overall system performance. Compatibility between the properties of the human organism on the one hand, and the adaptable technical components of a work system on the other hand, offers a great potential of preventive measures. Examples of ergonomically designed working tools show that compatibility is capable of reducing the prevalence of occupational diseases and repetitive strain injuries as well as leading to lower physiological cost in such a way that the same output results from a lower demand of human resources or even a higher performance will be attained. Compatibility also supports the quick perception and transmission of information in a man-machine system, and as a result of lower requirements for decoding during information processing, spare mental capacity may enhance occupational safety. In the field of software, compatibility also helps to avoid psychological frustration. All in all, the center core competency, which reflects the major significant function of the ergonomist in work design, consists in determining the compatibility of human capacity and planned or existing demands of work. In order to provide efficient working tools and working conditions as well as to be successful in occupational health and safety, ergonomics and industrial engineering in the future are expected to pay more attention to the rules of compatibility. Applied in an appropriate way, these rules may convince people that ergonomics can be a powerful means for reducing prevalence of occupational diseases and complaints, and has a positive effect on overall system performance. Besides presenting examples of work design according to the principle of compatibility, also methods will be shown which enable the assessment of the ergonomic quality of hand-held tools and computer input devices.


Sign in / Sign up

Export Citation Format

Share Document