Nuclear Counting Statistics

2012 ◽  
pp. 125-140
Author(s):  
Simon R. Cherry ◽  
James A. Sorenson ◽  
Michael E. Phelps
Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Sadashige Matsuo ◽  
Kazuyuki Kuroyama ◽  
Shunsuke Yabunaka ◽  
Sascha R. Valentin ◽  
Arne Ludwig ◽  
...  

Metrologia ◽  
2015 ◽  
Vol 52 (3) ◽  
pp. S3-S17 ◽  
Author(s):  
S Pommé ◽  
R Fitzgerald ◽  
J Keightley
Keyword(s):  

2010 ◽  
Vol 81 (20) ◽  
Author(s):  
Gernot Schaller ◽  
Gerold Kießlich ◽  
Tobias Brandes

2011 ◽  
Vol 67 (5) ◽  
pp. 409-415 ◽  
Author(s):  
Kevin H. Stone ◽  
Dayna L. Turner ◽  
Mayank Pratap Singh ◽  
Thomas P. Vaid ◽  
Peter W. Stephens

The crystal structures of the isostructural title compounds poly[(μ-benzene-1,4-dithiolato)dithallium], Tl2(SC6H4S), and poly[(μ-benzene-1,4-diselenolato)dithallium], Tl2(SeC6H4Se), were solved by simulated annealing from high-resolution synchrotron X-ray powder diffraction. Rietveld refinements of an initial structure with one formula unit per triclinic cell gave satisfactory agreement with the data, but led to a structure with impossibly close non-bonded contacts. A disordered model was proposed to alleviate this problem, but an alternative supercell structure leads to slightly improved agreement with the data. The isostructural superlattice structures were confirmed for both compounds through additional data collection, with substantially better counting statistics, which revealed the presence of very weak superlattice peaks not previously seen. Overall, each structure contains Tl—S or Tl—Se two-dimensional networks, connected by phenylene bridges. The sulfur (or selenium) coordination sphere around each thallium is a highly distorted square pyramid or a `see-saw' shape, depending upon how many Tl—S or Tl—Se interactions are considered to be bonds. In addition, the two compounds contain pairs of TlI ions that interact through a closed-shell `thallophilic' interaction: in the sulfur compound there are two inequivalent pairs of Tl atoms with Tl—Tl distances of 3.49 and 3.58 Å, while in the selenium compound those Tl—Tl interactions are at 3.54 and 3.63 Å.


Sign in / Sign up

Export Citation Format

Share Document