scholarly journals Using NMR Chemical Shifts to Determine Residue-Specific Secondary Structure Populations for Intrinsically Disordered Proteins

Author(s):  
Wade M. Borcherds ◽  
Gary W. Daughdrill
2019 ◽  
Vol 73 (12) ◽  
pp. 713-725 ◽  
Author(s):  
Ruth Hendus-Altenburger ◽  
Catarina B. Fernandes ◽  
Katrine Bugge ◽  
Micha B. A. Kunze ◽  
Wouter Boomsma ◽  
...  

Abstract Phosphorylation is one of the main regulators of cellular signaling typically occurring in flexible parts of folded proteins and in intrinsically disordered regions. It can have distinct effects on the chemical environment as well as on the structural properties near the modification site. Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins (IDPs) and the reliability of the analysis depends on an appropriate choice of random coil model. Random coil chemical shifts and sequence correction factors were previously determined for an Ac-QQXQQ-NH2-peptide series with X being any of the 20 common amino acids. However, a matching dataset on the phosphorylated states has so far only been incompletely determined or determined only at a single pH value. Here we extend the database by the addition of the random coil chemical shifts of the phosphorylated states of serine, threonine and tyrosine measured over a range of pH values covering the pKas of the phosphates and at several temperatures (www.bio.ku.dk/sbinlab/randomcoil). The combined results allow for accurate random coil chemical shift determination of phosphorylated regions at any pH and temperature, minimizing systematic biases of the secondary chemical shifts. Comparison of chemical shifts using random coil sets with and without inclusion of the phosphoryl group, revealed under/over estimations of helicity of up to 33%. The expanded set of random coil values will improve the reliability in detection and quantification of transient secondary structure in phosphorylation-modified IDPs.


ChemPhysChem ◽  
2013 ◽  
Vol 14 (13) ◽  
pp. 3034-3045 ◽  
Author(s):  
Jaka Kragelj ◽  
Valéry Ozenne ◽  
Martin Blackledge ◽  
Malene Ringkjøbing Jensen

2019 ◽  
Author(s):  
Ruchi Lohia ◽  
Reza Salari ◽  
Grace Brannigan

<div>The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) encodes a hydrophobic-to-hydrophobic mutation at the midpoint of the prodomain of precursor brain-derived neurotrophic factor (BDNF), one of the earliest SNPs to be associated with neuropsychiatric disorders, for which the underlying molecular mechanism is unknown. Here we report on over 250 μs of fully-atomistic, explicit solvent, temperature replica exchange molecular dynamics simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence.</div><div>The simulations were able to correctly reproduce the location of both local and non-local secondary changes due to the Val66Met mutation when compared with NMR spectroscopy. We find that the local structure change is mediated via entropic and sequence specific effects. We show that the highly disordered prodomain can be meaningfully divided into domains based on sequence alone. Monte Carlo simulations of a self-excluding heterogeneous polymer, with monomers representing each domain, suggest the sequence would be effectively segmented by the long, highly disordered polyampholyte near the sequence midpoint. This is qualitatively consistent with observed interdomain contacts within the BDNF prodomain, although contacts between the two segments are enriched relative to the self-excluding polymer. The Val66Met mutation increases interactions across the boundary between the two segments, due in part to a specific Met-Met interaction with a Methionine in the other segment. This effect propagates to cause the non-local change in secondary structure around the second methionine, previously observed in NMR. The effect is not mediated simply via changes in inter-domain contacts but is also dependent on secondary structure formation around residue 66, indicating a mechanism for secondary structure coupling in disordered proteins. </div>


2019 ◽  
Vol 116 (41) ◽  
pp. 20446-20452 ◽  
Author(s):  
Utsab R. Shrestha ◽  
Puneet Juneja ◽  
Qiu Zhang ◽  
Viswanathan Gurumoorthy ◽  
Jose M. Borreguero ◽  
...  

Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 654 ◽  
Author(s):  
Jiří Vymětal ◽  
Jiří Vondrášek ◽  
Klára Hlouchová

Intrinsically disordered proteins (IDPs) represent a distinct class of proteins and are distinguished from globular proteins by conformational plasticity, high evolvability and a broad functional repertoire. Some of their properties are reminiscent of early proteins, but their abundance in eukaryotes, functional properties and compositional bias suggest that IDPs appeared at later evolutionary stages. The spectrum of IDP properties and their determinants are still not well defined. This study compares rudimentary physicochemical properties of IDPs and globular proteins using bioinformatic analysis on the level of their native sequences and random sequence permutations, addressing the contributions of composition versus sequence as determinants of the properties. IDPs have, on average, lower predicted secondary structure contents and aggregation propensities and biased amino acid compositions. However, our study shows that IDPs exhibit a broad range of these properties. Induced fold IDPs exhibit very similar compositions and secondary structure/aggregation propensities to globular proteins, and can be distinguished from unfoldable IDPs based on analysis of these sequence properties. While amino acid composition seems to be a major determinant of aggregation and secondary structure propensities, sequence randomization does not result in dramatic changes to these properties, but for both IDPs and globular proteins seems to fine-tune the tradeoff between folding and aggregation.


Sign in / Sign up

Export Citation Format

Share Document