Screening Library Design

Author(s):  
Stephanie Kay Ashenden
2003 ◽  
Vol 8 (15) ◽  
pp. 668-672 ◽  
Author(s):  
Ramaswamy Nilakantan ◽  
David S. Nunn

Author(s):  
Markus Boehm ◽  
Liying Zhang ◽  
Nicole Bodycombe ◽  
Mateusz Maciejewski ◽  
Anne Mai Wassermann

2020 ◽  
Vol 28 (1) ◽  
pp. 115192 ◽  
Author(s):  
Brian R. Lahue ◽  
Meir Glick ◽  
Matthew Tudor ◽  
Scott Arne Johnson ◽  
Janet Diratsouian ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Zhang ◽  
Tuan M. Nguyen ◽  
Xiao-Ou Zhang ◽  
Limei Wang ◽  
Tin Phan ◽  
...  

AbstractShort hairpin RNAs (shRNAs) are used to deplete circRNAs by targeting back-splicing junction (BSJ) sites. However, frequent discrepancies exist between shRNA-mediated circRNA knockdown and the corresponding biological effect, querying their robustness. By leveraging CRISPR/Cas13d tool and optimizing the strategy for designing single-guide RNAs against circRNA BSJ sites, we markedly enhance specificity of circRNA silencing. This specificity is validated in parallel screenings by shRNA and CRISPR/Cas13d libraries. Using a CRISPR/Cas13d screening library targeting > 2500 human hepatocellular carcinoma-related circRNAs, we subsequently identify a subset of sorafenib-resistant circRNAs. Thus, CRISPR/Cas13d represents an effective approach for high-throughput study of functional circRNAs.


2021 ◽  
pp. 247255522110262
Author(s):  
Jonathan Choy ◽  
Yanqing Kan ◽  
Steve Cifelli ◽  
Josephine Johnson ◽  
Michelle Chen ◽  
...  

High-throughput phenotypic screening is a key driver for the identification of novel chemical matter in drug discovery for challenging targets, especially for those with an unclear mechanism of pathology. For toxic or gain-of-function proteins, small-molecule suppressors are a targeting/therapeutic strategy that has been successfully applied. As with other high-throughput screens, the screening strategy and proper assays are critical for successfully identifying selective suppressors of the target of interest. We executed a small-molecule suppressor screen to identify compounds that specifically reduce apolipoprotein L1 (APOL1) protein levels, a genetically validated target associated with increased risk of chronic kidney disease. To enable this study, we developed homogeneous time-resolved fluorescence (HTRF) assays to measure intracellular APOL1 and apolipoprotein L2 (APOL2) protein levels and miniaturized them to 1536-well format. The APOL1 HTRF assay served as the primary assay, and the APOL2 and a commercially available p53 HTRF assay were applied as counterscreens. Cell viability was also measured with CellTiter-Glo to assess the cytotoxicity of compounds. From a 310,000-compound screening library, we identified 1490 confirmed primary hits with 12 different profiles. One hundred fifty-three hits selectively reduced APOL1 in 786-O, a renal cell adenocarcinoma cell line. Thirty-one of these selective suppressors also reduced APOL1 levels in conditionally immortalized human podocytes. The activity and specificity of seven resynthesized compounds were validated in both 786-O and podocytes.


Fabrications ◽  
2018 ◽  
Vol 28 (3) ◽  
pp. 355-374
Author(s):  
Allan Stephen Balaara ◽  
Errol Haarhoff ◽  
Alessandro Melis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document