guide rnas
Recently Published Documents


TOTAL DOCUMENTS

537
(FIVE YEARS 321)

H-INDEX

49
(FIVE YEARS 12)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
De-Li Shi

Maternal gene products accumulated during oogenesis are essential for supporting early developmental processes in both invertebrates and vertebrates. Therefore, understanding their regulatory functions should provide insights into the maternal control of embryogenesis. The CRISPR/Cas9 genome editing technology has provided a powerful tool for creating genetic mutations to study gene functions and developing disease models to identify new therapeutics. However, many maternal genes are also essential after zygotic genome activation; as a result, loss of their zygotic functions often leads to lethality or sterility, thus preventing the generation of maternal mutants by classical crossing between zygotic homozygous mutant adult animals. Although several approaches, such as the rescue of mutant phenotypes through an injection of the wild-type mRNA, germ-line replacement, and the generation of genetically mosaic females, have been developed to overcome this difficulty, they are often technically challenging and time-consuming or inappropriate for many genes that are essential for late developmental events or for germ-line formation. Recently, a method based on the oocyte transgenic expression of CRISPR/Cas9 and guide RNAs has been designed to eliminate maternal gene products in zebrafish. This approach introduces several tandem guide RNA expression cassettes and a GFP reporter into transgenic embryos expressing Cas9 to create biallelic mutations and inactivate genes of interest specifically in the developing oocytes. It is particularly accessible and allows for the elimination of maternal gene products in one fish generation. By further improving its efficiency, this method can be used for the systematic characterization of maternal-effect genes.


2022 ◽  
Vol 23 (2) ◽  
pp. 631
Author(s):  
Wannaporn Ittiprasert ◽  
Chawalit Chatupheeraphat ◽  
Victoria H. Mann ◽  
Wenhui Li ◽  
André Miller ◽  
...  

The efficiency of the RNA-guided AsCas12a nuclease of Acidaminococcus sp. was compared with SpCas9 from Streptococcus pyogenes, for functional genomics in Schistosoma mansoni. We deployed optimized conditions for the ratio of guide RNAs to the nuclease, donor templates, and electroporation parameters, to target a key schistosome enzyme termed omega-1. Programmed cleavages catalyzed by Cas12a and Cas9 resulted in staggered- and blunt-ended strand breaks, respectively. AsCas12a was more efficient than SpCas9 for gene knockout, as determined by TIDE analysis. CRISPResso2 analysis confirmed that most mutations were deletions. Knockout efficiency of both nucleases markedly increased in the presence of single-stranded oligodeoxynucleotide (ssODN) template. With AsCas12a, ssODNs representative of both the non-CRISPR target (NT) and target (T) strands were tested, resulting in KO efficiencies of 15.67, 28.71, and 21.43% in the SpCas9 plus ssODN, AsCas12a plus NT-ssODN, and AsCas12a plus T-ssODN groups, respectively. Trans-cleavage against the ssODNs by activated AsCas12a was not apparent in vitro. SpCas9 catalyzed more precise transgene insertion, with knock-in efficiencies of 17.07% for the KI_Cas9 group, 14.58% for KI_Cas12a-NT-ssODN, and 12.37% for KI_Cas12a-T-ssODN. Although AsCas12a induced fewer mutations per genome than SpCas9, the phenotypic impact on transcription and expression of omega-1 was similar for both nucleases.


Author(s):  
Philipp Reautschnig ◽  
Nicolai Wahn ◽  
Jacqueline Wettengel ◽  
Annika E. Schulz ◽  
Ngadhnjim Latifi ◽  
...  
Keyword(s):  

2022 ◽  
Vol 36 (1-2) ◽  
pp. 1-3
Author(s):  
U. Thomas Meier

RNA modifications are crucial for the proper function of the RNAs. The sites of pseudouridines are often specified by dual hairpin guide RNAs, with one or both hairpins identifying a target uridine. In this issue of Genes & Development, Jády and colleagues (pp. 70–83) identify a novel mechanism by which a single guide RNA hairpin can specify two uridines adjacent to each other or separated by 1 nt; i.e., one for two or guide RNA acrobatics.


Author(s):  
Alexandre Goyon ◽  
Brandon Scott ◽  
Kenji Kurita ◽  
Chad Maschinot ◽  
Kevin Meyer ◽  
...  
Keyword(s):  

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Isabel C. Lewis ◽  
Yao Yan ◽  
Gregory C. Finnigan

The discovery and adaptation of CRISPR/Cas systems within molecular biology has provided advances across biological research, agriculture and human health. Genomic manipulation through use of a CRISPR nuclease and programmed guide RNAs has become a common and widely accessible practice. The identification and introduction of new engineered variants and orthologues of Cas9 as well as alternative CRISPR systems such as the type V group have provided additional molecular options for editing. These include distinct PAM requirements, staggered DNA double-strand break formation, and the ability to multiplex guide RNAs from a single expression construct. Use of CRISPR/Cas has allowed for the construction and testing of a powerful genetic architecture known as a gene drive within eukaryotic model systems. Our previous work developed a drive within budding yeast using Streptococcus pyogenes Cas9. Here, we installed the type V Francisella novicida Cas12a (Cpf1) nuclease gene and its corresponding guide RNA to power a highly efficient artificial gene drive in diploid yeast. We examined the consequence of altering guide length or introduction of individual mutational substitutions to the crRNA sequence. Cas12a-dependent gene-drive function required a guide RNA of at least 18 bp and could not tolerate most changes within the 5′ end of the crRNA.


2021 ◽  
Author(s):  
William C Skarnes ◽  
Gang Ning ◽  
Sofia Giansiracusa ◽  
Alexander S Cruz ◽  
Cornelis Blauwendraat ◽  
...  

Modeling human disease in human stem cells requires precise, scarless editing of single nucleotide variants (SNV) on one or both chromosomes. Here we describe improved conditions for Cas9 RNP editing of SNVs that yield high rates of biallelic homology-directed repair. To recover both heterozygous and homozygous SNV clones, catalytically inactive dCas9 was added to moderate high activity Cas9 RNPs. dCas9 can also block re-cutting and damage to SNV alleles engineered with non-overlapping guide RNAs.


2021 ◽  
Author(s):  
Beáta E. Jády ◽  
Amandine Ketele ◽  
Dylan Moulis ◽  
Tamás Kiss

Site-specific pseudouridylation of human ribosomal and spliceosomal RNAs is directed by H/ACA guide RNAs composed of two hairpins carrying internal pseudouridylation guide loops. The distal “antisense” sequences of the pseudouridylation loop base-pair with the target RNA to position two unpaired target nucleotides 5′-UN-3′, including the 5′ substrate U, under the base of the distal stem topping the guide loop. Therefore, each pseudouridylation loop is expected to direct synthesis of a single pseudouridine (Ψ) in the target sequence. However, in this study, genetic depletion and restoration and RNA mutational analyses demonstrate that at least four human H/ACA RNAs (SNORA53, SNORA57, SCARNA8, and SCARNA1) carry pseudouridylation loops supporting efficient and specific synthesis of two consecutive pseudouridines (ΨΨ or ΨNΨ) in the 28S (Ψ3747/Ψ3749), 18S (Ψ1045/Ψ1046), and U2 (Ψ43/Ψ44 and Ψ89/Ψ91) RNAs, respectively. In order to position two substrate Us for pseudouridylation, the dual guide loops form alternative base-pairing interactions with their target RNAs. This remarkable structural flexibility of dual pseudouridylation loops provides an unexpected versatility for RNA-directed pseudouridylation without compromising its efficiency and accuracy. Besides supporting synthesis of at least 6% of human ribosomal and spliceosomal Ψs, evidence indicates that dual pseudouridylation loops also participate in pseudouridylation of yeast and archaeal rRNAs.


2021 ◽  
Vol 22 (24) ◽  
pp. 13301
Author(s):  
Dan Zhu ◽  
Junyi Wang ◽  
Di Yang ◽  
Jianzhong Xi ◽  
Juan Li

CRISPR/Cas12a (formerly Cpf1), an RNA-guided endonuclease of the Class II Type V-A CRISPR system, provides a promising tool for genome engineering. Over 10 Cas12a orthologues have been identified and employed for gene editing in human cells. However, the functional diversity among emerging Cas12a orthologues remains poorly explored. Here, we report a high-throughput comparative profiling of editing activities across 16 Cas12a orthologues in human cells by constructing genome-integrated, self-cleaving, paired crRNA–target libraries containing >40,000 guide RNAs. Three Cas12a candidates exhibited promising potential owing to their compact structures and editing efficiency comparable with those of AsCas12a and LbCas12a, which are well characterized. We generated three arginine substitution variants (3Rv) via structure-guided protein engineering: BsCas12a-3Rv (K155R/N512R/K518R), PrCas12a-3Rv (E162R/N519R/K525R), and Mb3Cas12a-3Rv (D180R/N581R/K587R). All three Cas12a variants showed enhanced editing activities and expanded targeting ranges (NTTV, NTCV, and TRTV) compared with the wild-type Cas12a effectors. The base preference analysis among the three Cas12a variants revealed that PrCas12a-3Rv shows the highest activity at target sites with canonical PAM TTTV and non-canonical PAM TTCV, while Mb3Cas12a-3Rv exhibits recognition features distinct from the others by accommodating for more nucleotide A at position −3 for PAM TATV and at position −4 for PAM ATCV. Thus, the expanded Cas12a toolbox and an improved understanding of Cas12a activities should facilitate their use in genome engineering.


Sign in / Sign up

Export Citation Format

Share Document