scholarly journals Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Zhang ◽  
Tuan M. Nguyen ◽  
Xiao-Ou Zhang ◽  
Limei Wang ◽  
Tin Phan ◽  
...  

AbstractShort hairpin RNAs (shRNAs) are used to deplete circRNAs by targeting back-splicing junction (BSJ) sites. However, frequent discrepancies exist between shRNA-mediated circRNA knockdown and the corresponding biological effect, querying their robustness. By leveraging CRISPR/Cas13d tool and optimizing the strategy for designing single-guide RNAs against circRNA BSJ sites, we markedly enhance specificity of circRNA silencing. This specificity is validated in parallel screenings by shRNA and CRISPR/Cas13d libraries. Using a CRISPR/Cas13d screening library targeting > 2500 human hepatocellular carcinoma-related circRNAs, we subsequently identify a subset of sorafenib-resistant circRNAs. Thus, CRISPR/Cas13d represents an effective approach for high-throughput study of functional circRNAs.

Author(s):  
Yang Zhang ◽  
Tuan M. Nguyen ◽  
Xiao-Ou Zhang ◽  
Tin Phan ◽  
John G. Clohessy ◽  
...  

AbstractCircular RNAs (circRNAs) are widely expressed, but their functions remain largely unknown. To study circRNAs in a high-throughput manner, short hairpin RNA (shRNA) screens1 have recently been used to deplete circRNAs by targeting their unique back-splicing junction (BSJ) sites. Here, we report frequent discrepancies between shRNA-mediated circRNA knockdown efficiency and the corresponding biological effect, raising pressing concerns about the robustness of shRNA screening for functional circRNAs. To address this issue, we leveraged the CRISPR/Cas13d system2 for circRNAs functional screenings. We optimized a strategy for designing single guide RNAs to deplete circRNAs. We then performed shRNA and CRISPR/Cas13d parallel screenings and demonstrated that shRNA-mediated circRNAs screening yielded a high rate of false positives phenotypes, while optimized CRISPR/Cas13d led to the identification of bona-fide functional circRNAs. Collectively, we developed a specific and reliable approach to functionalize circRNAs in a high-throughput manner.


2011 ◽  
Vol 11 (4) ◽  
pp. 401-409 ◽  
Author(s):  
Hongxin Deng ◽  
Qingyuan Jiang ◽  
Yang Yang ◽  
Shuang Zhang ◽  
Yongping Ma ◽  
...  

2006 ◽  
Vol 11 (3) ◽  
pp. 236-246 ◽  
Author(s):  
Laurence H. Lamarcq ◽  
Bradley J. Scherer ◽  
Michael L. Phelan ◽  
Nikolai N. Kalnine ◽  
Yen H. Nguyen ◽  
...  

A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for positionspecific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNAinterference (RNAi).


2021 ◽  
Author(s):  
Jingyi Wei ◽  
Peter Lotfy ◽  
Kian Faizi ◽  
Hugo Kitano ◽  
Patrick D. Hsu ◽  
...  

AbstractTranscriptome engineering requires flexible RNA-targeting technologies that can perturb mammalian transcripts in a robust and scalable manner. CRISPR systems that natively target RNA molecules, such as Cas13 enzymes, are enabling rapid progress in the investigation of RNA biology and advancement of RNA therapeutics. Here, we sought to develop a Cas13 platform for high-throughput phenotypic screening and elucidate the design principles underpinning its RNA targeting efficiency. We employed the RfxCas13d (CasRx) system in a positive selection screen by tiling 55 known essential genes with single nucleotide resolution. Leveraging this dataset of over 127,000 guide RNAs, we systematically compared a series of linear regression and machine learning algorithms to train a convolutional neural network (CNN) model that is able to robustly predict guide RNA performance based on guide sequence alone. We further incorporated secondary features including secondary structure, free energy, target site position, and target isoform percent. To evaluate model performance, we conducted orthogonal screens via cell surface protein knockdown. The final CNN model is able to predict highly effective guide RNAs (gRNAs) within each transcript with >90% accuracy in this independent test set. To provide user interpretability, we evaluate feature contributions using both integrated gradients and SHapley Additive exPlanations (SHAP). We identify a specific sequence motif at guide position 15-24 along with selected secondary features to be predictive of highly efficient guides. Taken together, we derive Cas13d guide design rules from large-scale screen data, release a guide design tool (http://RNAtargeting.org) to advance the RNA targeting toolbox, and describe a path for systematic development of deep learning models to predict CRISPR activity.


Sign in / Sign up

Export Citation Format

Share Document