Understanding the learning mechanism of convolutional neural networks in spectral analysis

2020 ◽  
Vol 1119 ◽  
pp. 41-51 ◽  
Author(s):  
Xiaolei Zhang ◽  
Jinfan Xu ◽  
Jie Yang ◽  
Li Chen ◽  
Haibo Zhou ◽  
...  
2020 ◽  
Vol 12 (7) ◽  
pp. 1117 ◽  
Author(s):  
Wenyang Duan ◽  
Ke Yang ◽  
Limin Huang ◽  
Xuewen Ma

X-band marine radar is an effective tool for sea wave remote sensing. Conventional physical-based methods for acquiring wave parameters from radar sea clutter images use three-dimensional Fourier transform and spectral analysis. They are limited by some assumptions, empirical formulas and the calibration process while obtaining the modulation transfer function (MTF) and signal-to-noise ratio (SNR). Therefore, further improvement of wave inversion accuracy by using the physical-based method presents a challenge. Inspired by the capability of convolutional neural networks (CNN) in image characteristic processing, a deep-learning inversion method based on deep CNN is proposed. No intermediate step or parameter is needed in the CNN-based method, therefore fewer errors are introduced. Wave parameter inversion models were constructed based on CNN to inverse the wave’s spectral peak period and significant wave height. In the present paper, the numerically simulated X-band radar image data were used for a numerical investigation of wave parameters. Results of the conventional spectral analysis and CNN-based methods were compared and the CNN-based method had a higher accuracy on the same data set. The influence of training strategy on CNN-based inversion models was studied to analyze the dependence of a deep-learning inversion model on training data. Additionally, the effects of target parameters on the inversion accuracy of CNN-based models was also studied.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Sign in / Sign up

Export Citation Format

Share Document