Experimental and numerical study on seismic behavior of LYS and HYS steel plate shear walls connected to frame beams only

2017 ◽  
Vol 17 (1) ◽  
pp. 154-168 ◽  
Author(s):  
Behzad Shekastehband ◽  
Aliakbar Azaraxsh ◽  
Hossein Showkati
2017 ◽  
Vol 16 (2) ◽  
pp. 249-261 ◽  
Author(s):  
Hossein Khosravi ◽  
◽  
Sayed Shoaib Mousavi ◽  
Gholamreza Tadayonfar ◽  
◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Ningning Feng ◽  
Changsheng Wu

Two specimens of nonductile reinforced concrete (RC) frame (ND-1) and nonductile RC frame retrofitted by corrugated steel plate shear walls slotted with columns (ND-2) are established by finite element. These specimens have same dimensions and steel skeletons. Finite element models had been verified by the existing experimental results. The hysteresis curves, skeleton curves, ductility, and stiffness curves of Specimen ND-1 and Specimen ND-2 are compared. The results show that the reinforcement effect is significant. Twenty-four models are built to study the seismic behavior on different influence parameters. The parameters are slit width, thickness of corrugated steel plate shear walls, concrete strength of nonductile RC frame, and boundary conditions of corrugated steel plate shear walls at slotted parts. The results indicate that the strength is declined with the increase of slit width. With the increase of thickness and concrete strength, the strength and stiffness are enhanced. The strength is larger with the boundary than without. Slit width and thickness have an important impact on the stiffness. Concrete strength and boundary conditions have little impact on stiffness. The strengthened nonductile RC frames have enough ductility.


2018 ◽  
Vol 4 (1) ◽  
pp. 126 ◽  
Author(s):  
Amirhosein Raisszadeh ◽  
Alireza Rahai ◽  
Ardeshir Deylami

Steel plate shear walls consist of thin infill steel plates attached to beams, called (horizontal boundary elements, HBEs), and columns (vertical boundary elements, VBEs) in structural steel frames. The thin unstiffened web plates are expected to buckle in shear at low load levels and develop tension field action, providing ductility and energy dissipation through tension yielding of the web plate. HBEs are designed for stiffness and strength requirements and are expected to anchor the tension field formation in the web plates. VBEs are designed for yielding of web plates and plastic hinge formation at the ends of the HBEs. This design approach may result in very large demand on boundary frame members, especially VBEs in most cases. Several methods such as using LYP, perforating the infill plate and omitting connection of infill plate to columns have been proposed to reduce the moment and axial force demands on the VBEs. The main purpose of this research is to study the behavior of steel plate shear walls with various connection of infill plate to columns in multi span moment frames. A numerical study has been performed in order to investigate the behavior of such a system. The results of proposed system were compared with those of the conventional SPSWs. Results show that reducing the infill plate connection to columns will reduce the axial forces in columns.


Sign in / Sign up

Export Citation Format

Share Document