steel plate shear walls
Recently Published Documents


TOTAL DOCUMENTS

352
(FIVE YEARS 113)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 189 ◽  
pp. 107084
Author(s):  
Yousufu Ma ◽  
Bowen Sun ◽  
Jeffrey W. Berman ◽  
Assaad Taoum ◽  
Yang Yang

2022 ◽  
Vol 188 ◽  
pp. 107012
Author(s):  
Yujie Yu ◽  
Chunjian Hu ◽  
Fengtao Zhao ◽  
Lizhong Jiang

2022 ◽  
Vol 251 ◽  
pp. 113552
Author(s):  
Yu Shi ◽  
Zeqiao Luo ◽  
Yunpeng Xu ◽  
Yuxuan Zou ◽  
Lei Xu ◽  
...  

2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


2021 ◽  
Vol 14 (4) ◽  
pp. 131-145
Author(s):  
Nabaa Salah Hassan

The structural element within the whole structure contains structural elements like beams, slabs, columns and reinforced concrete walls. One of the most vertical structural elements is shear wall that built to giving stability to the building, resisting lateral force such as earthquake and wind and to reduce the building deformations.  In present study, the analysis of corrugated vertical steel plate shear walls using finite element method by ABAQUS software is examined. Four different modes are analysed in which the first model is vertical corrugated steel shear wall plate, second is the composite shear wall with full interaction, third is the composite shear wall and finally the fourth model is composite shear wall with gap between concrete panel and steel frame to check out the full performance of different shear wall under the effects of cyclic loadings. Displacement, drift and energy dissipation will investigate throughout analysis.  Analysis results indicated that the gap and composite action between steel and concrete panel play an important role on the performance of shear wall under cyclic loading. The decrease in displacement of composite shear wall as compared with the steel shear wall reach 11.86%.


Sign in / Sign up

Export Citation Format

Share Document