scholarly journals Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order

2013 ◽  
Vol 52 (4) ◽  
pp. 807-812 ◽  
Author(s):  
K. Sayevand ◽  
M. Fardi ◽  
E. Moradi ◽  
F. Hemati Boroujeni

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We apply the homotopy perturbation method to obtain the solution of partial differential equations of fractional order. This method is powerful tool to find exact and approximate solution of many linear and nonlinear partial differential equations of fractional order. Convergence of the method is proved and the convergence analysis is reliable enough to estimate the maximum absolute truncated error of the series solution. The fractional derivatives are described in the Caputo sense. Some examples are presented to verify convergence hypothesis and simplicity of the method.



Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 40 ◽  
Author(s):  
Shumaila Javeed ◽  
Dumitru Baleanu ◽  
Asif Waheed ◽  
Mansoor Shaukat Khan ◽  
Hira Affan

The analysis of Homotopy Perturbation Method (HPM) for the solution of fractional partial differential equations (FPDEs) is presented. A unified convergence theorem is given. In order to validate the theory, the solution of fractional-order Burger-Poisson (FBP) equation is obtained. Furthermore, this work presents the method to find the solution of FPDEs, while the same partial differential equation (PDE) with ordinary derivative i.e., for α = 1 , is not defined in the given domain. Moreover, HPM is applied to a complicated obstacle boundary value problem (BVP) of fractional order.



2009 ◽  
Vol T136 ◽  
pp. 014035 ◽  
Author(s):  
E Naseri ◽  
R Ghaderi ◽  
A Ranjbar N ◽  
J Sadati ◽  
M Mahmoudian ◽  
...  


2014 ◽  
Vol 11 (4) ◽  
pp. 1637-1648
Author(s):  
Baghdad Science Journal

In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.



2008 ◽  
Vol 22 (23) ◽  
pp. 4041-4058 ◽  
Author(s):  
ZAID ODIBAT ◽  
SHAHER MOMANI

Comparison of homotopy perturbation method (HPM) and variational iteration method (VIM) is made, revealing that the two methods can be used as alternative and equivalent methods for obtaining analytic and approximate solutions for different types of differential equations of fractional order. Furthermore, the former is more general and powerful than the latter. Numerical results show that the two approaches are easy to implement and accurate when applied to differential equations of fractional order.





Sign in / Sign up

Export Citation Format

Share Document