scholarly journals Stokes geometry of higher order linear ordinary differential equations and middle convolution

2017 ◽  
Vol 310 ◽  
pp. 327-376
Author(s):  
Takahiro Moteki ◽  
Yoshitsugu Takei
2015 ◽  
Vol 11 (7) ◽  
pp. 5403-5410 ◽  
Author(s):  
Mohamed Abdel -Latif Ramadan

The purpose of this paper is to investigate the use of rational Chebyshev (RC) functions for solving higher-order linear ordinary differential equations with variable coefficients on a semi-infinite domain using new rational Chebyshev collocation points.  This method transforms the higher-order linear ordinary differential equations and the given conditions to matrix equations with unknown rational Chebyshev coefficients. These matrices together with the collocation method are utilized to reduce the solution of higher-order ordinary differential equations to the solution of a system of algebraic equations. The solution is obtained in terms of RC series. Numerical examples are given to demonstrate the validity and applicability of the method. The obtained numerical results are compared with others existing methods and the exact solution where it shown to be very attractive and maintains better accuracy.


2016 ◽  
Vol 23 (4) ◽  
pp. 571-577
Author(s):  
Monika Dosoudilová ◽  
Alexander Lomtatidze

AbstractAn efficient condition is established ensuring that on any interval of length ω, any nontrivial solution of the equation ${u^{\prime\prime}=p(t)u}$ has at most one zero. Based on this result, the unique solvability of a periodic boundary value problem is studied.


1994 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
T. Chanturia

Abstract It is shown that the differential equation u (n) = p(t)u, where n ≥ 2 and p : [a, b] → ℝ is a summable function, is not conjugate in the segment [a, b], if for some l ∈ {1, . . . , n – 1}, α ∈]a, b[ and β ∈]α, b[ the inequalities hold.


Sign in / Sign up

Export Citation Format

Share Document