New multiple soliton-like solutions to the generalized (2+1)-dimensional KP equation

2004 ◽  
Vol 157 (3) ◽  
pp. 765-773 ◽  
Author(s):  
Huaitang Chen ◽  
Hongqing Zhang
Keyword(s):  
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongyi Gu ◽  
Fanning Meng

In this paper, we derive analytical solutions of the (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation by two different systematic methods. Using the exp⁡(-ψ(z))-expansion method, exact solutions of the mentioned equation including hyperbolic, exponential, trigonometric, and rational function solutions have been obtained. Based on the work of Yuan et al., we proposed the extended complex method to seek exact solutions of the (2+1)-dimensional KP equation. The results demonstrate that the applied methods are efficient and direct methods to solve the complex nonlinear systems.


Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractIn this work, two new completely integrable extensions of the Kadomtsev-Petviashvili (eKP) equation are developed. Multiple soliton solutions and multiple singular soliton solutions are derived to demonstrate the compatibility of the extensions of the KP equation.


2012 ◽  
Vol 22 (05) ◽  
pp. 1250126 ◽  
Author(s):  
FANG YAN ◽  
CUNCAI HUA ◽  
HAIHONG LIU ◽  
ZENGRONG LIU

By using the method of dynamical systems, this paper studies the exact traveling wave solutions and their bifurcations in the Gardner equation. Exact parametric representations of all wave solutions as well as the explicit analytic solutions are given. Moreover, several series of exact traveling wave solutions of the Gardner–KP equation are obtained via an auxiliary function method.


Author(s):  
Daniel J. Ratliff ◽  
Thomas J. Bridges

The Kadomstev–Petviashvili (KP) equation is a well-known modulation equation normally derived by starting with the trivial state and an appropriate dispersion relation. In this paper, it is shown that the KP equation is also the relevant modulation equation for bifurcation from periodic travelling waves when the wave action flux has a critical point. Moreover, the emergent KP equation arises in a universal form, with the coefficients determined by the components of the conservation of wave action. The theory is derived for a general class of partial differential equations generated by a Lagrangian using phase modulation. The theory extends to any space dimension and time, but the emphasis in the paper is on the case of 3+1. Motivated by light bullets and quantum vortex dynamics, the theory is illustrated by showing how defocusing NLS in 3+1 bifurcates to KP in 3+1 at criticality. The generalization to N >3 is also discussed.


Sign in / Sign up

Export Citation Format

Share Document