An efficient algorithm for orbital evolution of artificial satellite

2007 ◽  
Vol 191 (2) ◽  
pp. 415-428 ◽  
Author(s):  
Yehia A. Abdel-Aziz ◽  
F.A. Abd El-Salam
1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1966 ◽  
Vol 25 ◽  
pp. 363-371
Author(s):  
P. Sconzo

In this paper an orbit computation program for artificial satellites is presented. This program is operational and it has already been used to compute the orbits of several satellites.After an introductory discussion on the subject of artificial satellite orbit computations, the features of this program are thoroughly explained. In order to achieve the representation of the orbital elements over short intervals of time a drag-free perturbation theory coupled with a differential correction procedure is used, while the long range behavior is obtained empirically. The empirical treatment of the non-gravitational effects upon the satellite motion seems to be very satisfactory. Numerical analysis procedures supporting this treatment and experience gained in using our program are also objects of discussion.


1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


Author(s):  
P.J. Phillips ◽  
J. Huang ◽  
S. M. Dunn

In this paper we present an efficient algorithm for automatically finding the correspondence between pairs of stereo micrographs, the key step in forming a stereo image. The computation burden in this problem is solving for the optimal mapping and transformation between the two micrographs. In this paper, we present a sieve algorithm for efficiently estimating the transformation and correspondence.In a sieve algorithm, a sequence of stages gradually reduce the number of transformations and correspondences that need to be examined, i.e., the analogy of sieving through the set of mappings with gradually finer meshes until the answer is found. The set of sieves is derived from an image model, here a planar graph that encodes the spatial organization of the features. In the sieve algorithm, the graph represents the spatial arrangement of objects in the image. The algorithm for finding the correspondence restricts its attention to the graph, with the correspondence being found by a combination of graph matchings, point set matching and geometric invariants.


2016 ◽  
Vol 2016 (7) ◽  
pp. 1-6
Author(s):  
Sergey Makov ◽  
Vladimir Frantc ◽  
Viacheslav Voronin ◽  
Igor Shrayfel ◽  
Vadim Dubovskov ◽  
...  

1990 ◽  
Author(s):  
LARRY FRIESEN ◽  
ALBERT JACKSON, IV ◽  
HERBERT ZOOK ◽  
DONALD KESSLER
Keyword(s):  

2015 ◽  
Vol 53 ◽  
pp. 107-113 ◽  
Author(s):  
Qi Liu ◽  
Xi-Kui Ma ◽  
Feng Chen

Sign in / Sign up

Export Citation Format

Share Document