orbital evolution
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 98)

H-INDEX

42
(FIVE YEARS 7)

Author(s):  
Huiyan Zhang ◽  
Yong Yu ◽  
Dan Yan ◽  
Kai Tang ◽  
Rongchuan Qiao

Abstract With unique orbital and physical characteristics, Triton is a very important target since it may contain information of the origin and evolution of the solar system. Besides space explorations, ground-based observations over long time also play key role on research of Triton. High-precision positions of Triton obtained from ground telescopes are of great significance for studying its orbital evolution and inverting the physical properties of Neptune. As a long-term observational target, Triton has been observed by the 1.56 m telescope of Shanghai Astronomical Observatory since 1996. In this paper, based on our AAPPDI software and with Gaia DR2 as the reference catalogue, 604 positions of Triton during 2010-2014 are calculated, with standard errors of $19mas-88mas$. A comparison between our results and the ephemeris (DE431+nep096) is also given.


Author(s):  
J. Bétrisey ◽  
C. Pezzotti ◽  
G. Buldgen ◽  
S. Khan ◽  
P. Eggenberger ◽  
...  

2021 ◽  
Vol 2103 (1) ◽  
pp. 012027
Author(s):  
S N Petrova ◽  
A V Devyatkin ◽  
D L Gorshanov ◽  
V N L’vov ◽  
S A Rusov

Abstract In the frame of this study astrometric observations of an unusual object 2020 SO - a newly discovered asteroid that turned out to be a Centaur upper-stage booster from 1960s - during its two close approaches to the Earth in December, 2020 and February, 2021 were carried out using two telescopes of Pulkovo observatory. The orbit of the object in question was determined and its future orbital evolution was modelled.


Author(s):  
M L Novarino ◽  
M Echeveste ◽  
O G Benvenuto ◽  
M A De Vito ◽  
G A Ferrero

Abstract The standard model of stellar evolution in Close Binary Systems assumes that during mass transfer episodes the system is in a synchronised and circularised state. Remarkably, the redback system PSR J1723-2837 has an orbital period derivative $\dot{P}_{orb}$ too large to be explained by this model. Motivated by this fact, we investigate the action of tidal forces in between two consecutive mass transfer episodes for a system under irradiation feedback, which is a plausible progenitor for PSR J1723-2837. We base our analysis on Hut’s treatment of equilibrium tidal evolution, generalised by considering the donor as a two layers object that may not rotate as a rigid body. We also analyse three different relations for the viscosity with the tidal forcing frequency. We found that the large value measured for $\dot{P}_{orb}$ can be reached by systems where the donor star rotates slower (by few per cent) than the orbit just after mass transfer episodes. Van Staden & Antoniadis have observed this object and reported a lack of synchronism, opposite to that required by the Hut’s theory to account for the observed $\dot{P}_{orb}$. Motivated by this discrepancy, we analyse photometric data obtained by the spacecraft Kepler second mission K2, with the purpose of identifying the periods present in PSR J1723-2837. We notice several periods close to those of the orbit and the rotation. The obtained periods pattern reveals the presence of a more complex phenomenology, which would not be well described in the frame of the weak friction model of equilibrium tides.


2021 ◽  
Vol 654 ◽  
pp. L5
Author(s):  
C. Pezzotti ◽  
O. Attia ◽  
P. Eggenberger ◽  
G. Buldgen ◽  
V. Bourrier

Context. TOI-849b is one of the few planets populating the hot-Neptune desert and it is the densest Neptune-sized one discovered so far. Its extraordinary proximity to the host star, together with the absence of a massive H/He envelope on top of the 40.8 M⊕ rocky core, calls into question the role played by the host star in the evolution of the system. Aims. We aim to study the impact of the host star’s rotational history on the evolution of TOI-849b, particularly focussing on the planetary migration due to dynamical tides dissipated in the stellar convective envelope, and on the high-energy stellar emission. Methods. Rotating stellar models of TOI-849 are coupled to our orbital evolution code to study the evolution of the planetary orbit. The evolution of the planetary atmosphere is studied by means of the JADE code, which uses realistic X-ray and extreme-ultraviolet (XUV) fluxes provided by our rotating stellar models. Results. Assuming that the planet was at its present-day position (ain = 0.01598 AU) at the protoplanetary disc dispersal, with mass 40.8 M⊕, and considering a broad range of host star initial surface rotation rates (Ωin ∈ [3.2, 18] Ω⊙), we find that only for Ωin ≤ 5 Ω⊙ do we reproduce the current position of the planet, given that for Ωin >  5 Ω⊙ its orbit is efficiently deflected by dynamical tides within the first ∼40 Myr of evolution. We also simulated the evolution of the orbit for values of ain ≠ 0.01598 AU for each of the considered rotational histories, confirming that the only combination suited to reproduce the current position of the planet is given by ain = 0.01598 AU and Ωin ≤ 5 Ω⊙. We tested the impact of increasing the initial mass of the planet on the efficiency of tides, finding that a higher initial mass (Min = 1 MJup) does not change the results reported above. Based on these results we computed the evolution of the planetary atmospheres with the JADE code for a large range of initial masses above a core mass of 40.8 M⊕, finding that the strong XUV-flux received by the planet is able to remove the entirety of the envelope within the first 50 Myr, even if it formed as a Jupiter-mass planet.


2021 ◽  
Vol 100 (3) ◽  
pp. 195-206
Author(s):  
Andrea Magnanini

AbstractJupiter and its moons are a complex dynamical system that include several phenomena like tides interactions, moon’s librations and resonances. One of the most interesting characteristics of the Jovian system is the presence of the Laplace resonance, where the orbital periods of Ganymede, Europa and Io maintain a 4:2:1 ratio, respectively. It is interesting to study the role of the Laplace resonance in the dynamic of the system, especially regarding the dissipative nature of the tidal interaction between Jupiter and its closest moon, Io. The secular orbital evolution of the Galilean satellites, and so the Laplace resonance, is strongly influenced by the tidal interaction between Jupiter and its moons, especially with Io. Numerous theories have been proposed regarding this topic, but they disagree about the amount of dissipation of the system, therefore about the magnitude and the direction of the evolution of the system, mainly because of the lack of experimental data. The future ESA JUICE space mission is a great opportunity to solve this dispute. The data that will be collect during the mission will have an exceptional accuracy, allowing to investigate several aspects of the dynamics the system and possibly the evolution of Laplace Resonance of the Galilean moons. This work will focus on the gravity estimation and orbit reconstruction of the Galilean satellites by precise orbit determination of the JUICE mission during the Jovian orbital phase using radiometric data.


2021 ◽  
Vol 133 (6) ◽  
Author(s):  
J. C. B. Papaloizou

AbstractWe study orbital evolution of multi-planet systems that form a resonant chain, with nearest neighbours close to first order commensurabilities, incorporating orbital circularisation produced by tidal interaction with the central star. We develop a semi-analytic model applicable when the relative proximities to commensurability, though small, are large compared to $$\epsilon ^{2/3},$$ ϵ 2 / 3 , with $$\epsilon $$ ϵ being a measure of the characteristic planet to central star mass ratio. This enables determination of forced eccentricities as well as which resonant angles enter libration. When there are no active linked three body Laplace resonances, the rate of evolution of the semi-major axes may also be determined. We perform numerical simulations of the HD 158259 and EPIC 245950175 systems finding that the semi-analytic approach works well in the former case but not so well in the latter case on account of the effects of three active three body Laplace resonances which persist during the evolution. For both systems we estimate that if the tidal parameter, $$Q',$$ Q ′ , significantly exceeds 1000,  tidal effects are unlikely to have influenced period ratios significantly since formation. On the other hand if $$Q' < \sim 100$$ Q ′ < ∼ 100 tidal effects may have produced significant changes including the formation of three body Laplace resonances in the case of the EPIC 245950175 system.


2021 ◽  
Vol 200 ◽  
pp. 105195
Author(s):  
Marina Höschele ◽  
Alexander Stark ◽  
Kai Wickhusen ◽  
Hauke Hussmann ◽  
Jürgen Oberst

2021 ◽  
Vol 912 (1) ◽  
pp. L8
Author(s):  
Tod E. Strohmayer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document