gravitational effects
Recently Published Documents


TOTAL DOCUMENTS

494
(FIVE YEARS 77)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Nava Gaddam ◽  
Nico Groenenboom ◽  
Gerard ’t Hooft

Abstract We study scattering on the black hole horizon in a partial wave basis, with an impact parameter of the order of the Schwarzschild radius or less. This resembles the strong gravity regime where quantum gravitational effects appear. The scattering is governed by an infinite number of virtual gravitons exchanged on the horizon. Remarkably, they can all be summed non-perturbatively in ħ and γ ∼ MPl/MBH. These results generalise those obtained from studying gravitational backreaction. Unlike in the eikonal calculations in flat space, the relevant centre of mass energy of the collisions is not necessarily Planckian; instead it is easily satisfied, s » γ2$$ {M}_{\mathrm{Pl}}^2 $$ M Pl 2 , for semi-classical black holes. The calculation lends further support to the scattering matrix approach to quantum black holes, and is a second-quantised generalisation of the same.


Author(s):  
M. Fathi ◽  
J.R. Villanueva

In this paper, we mainly aim at highlighting the importance of (hyper-)elliptic integrals in the study of gravitational effects caused by strongly gravitating systems. For this, we study the application of elliptic integrals in calculating the light deflection as it passes a plasmic medium, surrounding a charged Weyl black hole. To proceed with this, we consider two specific algebraic ansatzes for the plasmic refractive index, and we characterize the photon sphere for each of the cases. This will be used further to calculate the angular diameter of the corresponding black hole shadow. We show that the complexity of the refractive index expressions, can result in substantially different types of dependencies of the light behavior on the spacetime parameters. В этой статье мы в основном стремимся подчеркнуть важность (гипер) эллиптических интегралов в изучении гравитационных эффектов, вызванных сильно гравитирующими системами. Для этого мы изучаем применение эллиптических интегралов при вычислении отклонения света при его прохождении через плазменную среду, окружающую заряженную черную дыру Вейля. Чтобы продолжить это, мы рассмотрим два конкретных алгебраических анзаца для показателя преломления плазмы и охарактеризуем фотонную сферу для каждого из случаев. Это будет использоваться в дальнейшем для вычисления углового диаметра соответствующей тени черной дыры. Мы показываем, что сложность выражений показателя преломления может привести к существенно разным типам зависимостей поведения света от пространственно-временных параметров.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 451
Author(s):  
Matteo Luca Ruggiero

We discuss the linear gravitoelectromagnetic approach used to solve Einstein’s equations in the weak-field and slow-motion approximation, which is a powerful tool to explain, by analogy with electromagnetism, several gravitational effects in the solar system, where the approximation holds true. In particular, we discuss the analogy, according to which Einstein’s equations can be written as Maxwell-like equations, and focus on the definition of the gravitoelectromagnetic fields in non-stationary conditions. Furthermore, we examine to what extent, starting from a given solution of Einstein’s equations, gravitoelectromagnetic fields can be used to describe the motion of test particles using a Lorentz-like force equation.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012029
Author(s):  
A A Martyusheva ◽  
A V Devyatkin

Abstract A small near-Earth asteroid, discovered by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) on September 17, 2020, turned out to be a part of the Centaur upper stage of the Surveyor 2 spacecraft launched by NASA on September 20, 1966 and subsequently crashed. This object had moved in a heliocentric orbit until it was under the influence of Earth’s gravitational field. As a result, a close approach to the Earth took place at a distance of about 50000 km on December 1, 2020. Despite the fact that the Centaur escaped back into a new orbit around the Sun in March 2021, it is of special interest for research, in particular, to consider the impact of non-gravitational effects on its orbital characteristics. Thus, it was calculated that the maximum displacement of the object trajectory due to the influence of solar radiation pressure over 15 years (the next close approach will take place in 2036) can be about 10.3-13.5 km, depending on the albedo. Estimations of the Yarkovsky effect showed that the magnitude of the expected change in the semi-major axis of Centaur’s orbit is from -8.1 • 10−13 to 1.6 10−13, depending on the angle of its rotation.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 417
Author(s):  
Giuseppe Gaetano Luciano ◽  
Massimo Blasone

We analyze the effects of gravity on neutrino wave packet decoherence. As a specific example, we consider the gravitational field of a spinning spherical body described by the Lense–Thirring metric. By working in the weak-field limit and employing Gaussian wave packets, we show that the characteristic coherence length of neutrino oscillation processes is nontrivially affected, with the corrections being dependent on the mass and angular velocity of the gravity source. Possible experimental implications are finally discussed.


2021 ◽  
Author(s):  
Lucy R. Hinton ◽  
Lomani A. O'Hagan ◽  
Andrew P. Griffiths ◽  
Alys R. Clark ◽  
Anthony R. J. Phillips ◽  
...  

2021 ◽  
Author(s):  
Aloke Kumar Sinha

Black holes and Dark matter are two fascinating things that are known very little. They may have non gravitational interactions, but those are definitely extremely feeble in comparison to their gravitational interactions. Nowadays some people think that one may contain the other. In this chapter we will see that some black holes may contain the dark matter. These black holes decay under Hawking radiation, but do not vanish completely. They produce stable end states due to both quantum gravitational effects and thermodynamic reasons. These end states are the replicas of what we call dark matter. We will develop the complete theory for decay of such black holes, starting from some scheme independent assumptions for the quantum mechanical nature of the black holes. We will then consider explicit examples of some black holes to show that they indeed produce replicas of dark matter at their end states. Thus this chapter is going to be a manuscript for theoretical development of black hole decay from a quantum mechanical perspective and its consequences for producing replicas of dark matter.


Author(s):  
Houcine Aounallah ◽  
Hayade Zarei ◽  
Prabir Rudra ◽  
Barun Majumder

In this paper, we explore the black hole solutions with rainbow deformed metric in the presence of exponential form of nonlinear electrodynamics with asymptotic Reissner-Nordstrom properties. We calculate the exact solution of metric function and explore the geometrical prop- erties in the background of massive gravity. From the obtained solution, the existence of the singularity is confirmed in proper limits. Using the solutions we also investigate the thermody- namic properties of the solutions by checking the validity of the first law of thermodynamics. Continuing the thermodynamic study, we investigate the conditions under which the system is thermally stable from the heat capacity and the Gibbs free energy. We also discuss the possible phase transition and the criticality of the system. It was found that the quantum gravitational effects of gravity’s rainbow render the thermodynamic system stable in the vicinity of the singu- larity. From the equation of state it was found that after diverging at the singularity, the system evolves asymptotically into pressure-less dust as one moves away from the central singularity.


Sign in / Sign up

Export Citation Format

Share Document