Upper semicontinuity of pullback attractors for lattice nonclassical diffusion delay equations under singular perturbations

2014 ◽  
Vol 242 ◽  
pp. 315-327 ◽  
Author(s):  
Meiyu Sui ◽  
Yejuan Wang
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Na Lei ◽  
Shengfan Zhou

<p style='text-indent:20px;'>Consider the second order nonautonomous lattice systemswith singular perturbations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \epsilon \ddot{u}_{m}+\dot{u}_{m}+(Au)_{m}+\lambda_{m}u_{m}+f_{m}(u_{j}|j\in I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k},\; \; \epsilon&gt;0 \tag{*} \label{0} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and the first order nonautonomous lattice systems</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \dot{u}_{m}+(Au)_{m}+\lambda _{m}u_{m}+f_{m}(u_{j}|j∈I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k}. \tag{**} \label{00} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Under certain conditions, there are pullback attractors <inline-formula><tex-math id="M1">\begin{document}$ \{\mathcal{A}_{\epsilon }(t)\subset \ell ^{2}\times \ell ^{2}\}_{t\in \mathbb{R}} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \{\mathcal{A}(t)\subset \ell ^{2}\}_{t\in \mathbb{R}} $\end{document}</tex-math></inline-formula> for systems (*)and (**), respectively. In this paper, we mainly consider the uppersemicontinuity of attractors <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{A}_{\epsilon }(t)\subset \ell^{2}\times \ell ^{2} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ t\in \mathbb{R} $\end{document}</tex-math></inline-formula>, with respect to the coefficient <inline-formula><tex-math id="M5">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula> of second derivative term under Hausdorff semidistance. First, we studythe relationship between <inline-formula><tex-math id="M6">\begin{document}$ \mathcal{A}_{\epsilon }(t) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ \mathcal{A}(t) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M8">\begin{document}$ \epsilon \rightarrow 0^{+} $\end{document}</tex-math></inline-formula>. We construct a family of compact sets <inline-formula><tex-math id="M9">\begin{document}$ \mathcal{A}_{0}(t)\subset \ell ^{2}\times \ell ^{2} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ t\in \mathbb{R} $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M11">\begin{document}$ \mathcal{A}(t) $\end{document}</tex-math></inline-formula> is naturally embedded into <inline-formula><tex-math id="M12">\begin{document}$ \mathcal{A}_{0}(t) $\end{document}</tex-math></inline-formula> as the firstcomponent, and prove that <inline-formula><tex-math id="M13">\begin{document}$ \mathcal{A}_{\epsilon }(t) $\end{document}</tex-math></inline-formula> can enter anyneighborhood of <inline-formula><tex-math id="M14">\begin{document}$ \mathcal{A}_{0}(t) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M15">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula> is small enough. Thenfor <inline-formula><tex-math id="M16">\begin{document}$ \epsilon _{0}&gt;0 $\end{document}</tex-math></inline-formula>, we prove that <inline-formula><tex-math id="M17">\begin{document}$ \mathcal{A}_{\epsilon }(t) $\end{document}</tex-math></inline-formula> can enterany neighborhood of <inline-formula><tex-math id="M18">\begin{document}$ \mathcal{A}_{\epsilon _{0}}(t) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M19">\begin{document}$ \epsilon\rightarrow \epsilon _{0} $\end{document}</tex-math></inline-formula>. Finally, we consider the existence andexponentially attraction of the singleton pullback attractors of systems (*)-(**).</p>


2015 ◽  
Vol 128 ◽  
pp. 303-324 ◽  
Author(s):  
Hongyong Cui ◽  
Yangrong Li ◽  
Jinyan Yin

2021 ◽  
pp. 2150050
Author(s):  
Yiju Chen ◽  
Chunxiao Guo ◽  
Xiaohu Wang

In this paper, we study the Wong–Zakai approximations of a class of second-order stochastic lattice systems with additive noise. We first prove the existence of tempered pullback attractors for lattice systems driven by an approximation of the white noise. Then, we establish the upper semicontinuity of random attractors for the approximate system as the size of approximation approaches zero.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yonghai Wang ◽  
Minhui Hu ◽  
Yuming Qin

AbstractIn this paper, we study the local uniformly upper semicontinuity of pullback attractors for a strongly damped wave equation. In particular, under some proper assumptions, we prove that the pullback attractor $\{A_{\varepsilon }(t)\}_{t\in \mathbb{R}}$ { A ε ( t ) } t ∈ R of Eq. (1.1) with $\varepsilon \in [0,1]$ ε ∈ [ 0 , 1 ] satisfies $\lim_{\varepsilon \to \varepsilon _{0}}\sup_{t\in [a,b]} \operatorname{dist}_{H_{0}^{1}\times L^{2}}(A_{\varepsilon }(t),A_{ \varepsilon _{0}}(t))=0$ lim ε → ε 0 sup t ∈ [ a , b ] dist H 0 1 × L 2 ( A ε ( t ) , A ε 0 ( t ) ) = 0 for any $[a,b]\subset \mathbb{R}$ [ a , b ] ⊂ R and $\varepsilon _{0}\in [0,1]$ ε 0 ∈ [ 0 , 1 ] .


Sign in / Sign up

Export Citation Format

Share Document