scholarly journals Upper semicontinuity of pullback attractors for non-autonomous lattice systems under singular perturbations

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Na Lei ◽  
Shengfan Zhou

<p style='text-indent:20px;'>Consider the second order nonautonomous lattice systemswith singular perturbations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \epsilon \ddot{u}_{m}+\dot{u}_{m}+(Au)_{m}+\lambda_{m}u_{m}+f_{m}(u_{j}|j\in I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k},\; \; \epsilon&gt;0 \tag{*} \label{0} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and the first order nonautonomous lattice systems</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \dot{u}_{m}+(Au)_{m}+\lambda _{m}u_{m}+f_{m}(u_{j}|j∈I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k}. \tag{**} \label{00} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Under certain conditions, there are pullback attractors <inline-formula><tex-math id="M1">\begin{document}$ \{\mathcal{A}_{\epsilon }(t)\subset \ell ^{2}\times \ell ^{2}\}_{t\in \mathbb{R}} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \{\mathcal{A}(t)\subset \ell ^{2}\}_{t\in \mathbb{R}} $\end{document}</tex-math></inline-formula> for systems (*)and (**), respectively. In this paper, we mainly consider the uppersemicontinuity of attractors <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{A}_{\epsilon }(t)\subset \ell^{2}\times \ell ^{2} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ t\in \mathbb{R} $\end{document}</tex-math></inline-formula>, with respect to the coefficient <inline-formula><tex-math id="M5">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula> of second derivative term under Hausdorff semidistance. First, we studythe relationship between <inline-formula><tex-math id="M6">\begin{document}$ \mathcal{A}_{\epsilon }(t) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ \mathcal{A}(t) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M8">\begin{document}$ \epsilon \rightarrow 0^{+} $\end{document}</tex-math></inline-formula>. We construct a family of compact sets <inline-formula><tex-math id="M9">\begin{document}$ \mathcal{A}_{0}(t)\subset \ell ^{2}\times \ell ^{2} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ t\in \mathbb{R} $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M11">\begin{document}$ \mathcal{A}(t) $\end{document}</tex-math></inline-formula> is naturally embedded into <inline-formula><tex-math id="M12">\begin{document}$ \mathcal{A}_{0}(t) $\end{document}</tex-math></inline-formula> as the firstcomponent, and prove that <inline-formula><tex-math id="M13">\begin{document}$ \mathcal{A}_{\epsilon }(t) $\end{document}</tex-math></inline-formula> can enter anyneighborhood of <inline-formula><tex-math id="M14">\begin{document}$ \mathcal{A}_{0}(t) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M15">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula> is small enough. Thenfor <inline-formula><tex-math id="M16">\begin{document}$ \epsilon _{0}&gt;0 $\end{document}</tex-math></inline-formula>, we prove that <inline-formula><tex-math id="M17">\begin{document}$ \mathcal{A}_{\epsilon }(t) $\end{document}</tex-math></inline-formula> can enterany neighborhood of <inline-formula><tex-math id="M18">\begin{document}$ \mathcal{A}_{\epsilon _{0}}(t) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M19">\begin{document}$ \epsilon\rightarrow \epsilon _{0} $\end{document}</tex-math></inline-formula>. Finally, we consider the existence andexponentially attraction of the singleton pullback attractors of systems (*)-(**).</p>

2021 ◽  
pp. 2150050
Author(s):  
Yiju Chen ◽  
Chunxiao Guo ◽  
Xiaohu Wang

In this paper, we study the Wong–Zakai approximations of a class of second-order stochastic lattice systems with additive noise. We first prove the existence of tempered pullback attractors for lattice systems driven by an approximation of the white noise. Then, we establish the upper semicontinuity of random attractors for the approximate system as the size of approximation approaches zero.


2008 ◽  
Vol 18 (11) ◽  
pp. 3447-3454
Author(s):  
SHENGFAN ZHOU

In this letter, by using a criteria for estimating the fractal dimension of a compact subset of a Hilbert space which is directly obtained from [Chueshov & Lasiecka, 2004], the upper bounds of fractal dimension of the global attractors for first-order and partly dissipative lattice systems, and second-order dissipative lattice systems, are obtained.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 315-318 ◽  
Author(s):  
K. Momose ◽  
K. Komiya ◽  
A. Uchiyama

Abstract:The relationship between chromatically modulated stimuli and visual evoked potentials (VEPs) was considered. VEPs of normal subjects elicited by chromatically modulated stimuli were measured under several color adaptations, and their binary kernels were estimated. Up to the second-order, binary kernels obtained from VEPs were so characteristic that the VEP-chromatic modulation system showed second-order nonlinearity. First-order binary kernels depended on the color of the stimulus and adaptation, whereas second-order kernels showed almost no difference. This result indicates that the waveforms of first-order binary kernels reflect perceived color (hue). This supports the suggestion that kernels of VEPs include color responses, and could be used as a probe with which to examine the color visual system.


2017 ◽  
Vol 9 (3) ◽  
pp. 17-30
Author(s):  
Kelly James Clark

In Branden Thornhill-Miller and Peter Millican’s challenging and provocative essay, we hear a considerably longer, more scholarly and less melodic rendition of John Lennon’s catchy tune—without religion, or at least without first-order supernaturalisms (the kinds of religion we find in the world), there’d be significantly less intra-group violence. First-order supernaturalist beliefs, as defined by Thornhill-Miller and Peter Millican (hereafter M&M), are “beliefs that claim unique authority for some particular religious tradition in preference to all others” (3). According to M&M, first-order supernaturalist beliefs are exclusivist, dogmatic, empirically unsupported, and irrational. Moreover, again according to M&M, we have perfectly natural explanations of the causes that underlie such beliefs (they seem to conceive of such natural explanations as debunking explanations). They then make a case for second-order supernaturalism, “which maintains that the universe in general, and the religious sensitivities of humanity in particular, have been formed by supernatural powers working through natural processes” (3). Second-order supernaturalism is a kind of theism, more closely akin to deism than, say, Christianity or Buddhism. It is, as such, universal (according to contemporary psychology of religion), empirically supported (according to philosophy in the form of the Fine-Tuning Argument), and beneficial (and so justified pragmatically). With respect to its pragmatic value, second-order supernaturalism, according to M&M, gets the good(s) of religion (cooperation, trust, etc) without its bad(s) (conflict and violence). Second-order supernaturalism is thus rational (and possibly true) and inconducive to violence. In this paper, I will examine just one small but important part of M&M’s argument: the claim that (first-order) religion is a primary motivator of violence and that its elimination would eliminate or curtail a great deal of violence in the world. Imagine, they say, no religion, too.Janusz Salamon offers a friendly extension or clarification of M&M’s second-order theism, one that I think, with emendations, has promise. He argues that the core of first-order religions, the belief that Ultimate Reality is the Ultimate Good (agatheism), is rational (agreeing that their particular claims are not) and, if widely conceded and endorsed by adherents of first-order religions, would reduce conflict in the world.While I favor the virtue of intellectual humility endorsed in both papers, I will argue contra M&M that (a) belief in first-order religion is not a primary motivator of conflict and violence (and so eliminating first-order religion won’t reduce violence). Second, partly contra Salamon, who I think is half right (but not half wrong), I will argue that (b) the religious resources for compassion can and should come from within both the particular (often exclusivist) and the universal (agatheistic) aspects of religious beliefs. Finally, I will argue that (c) both are guilty, as I am, of the philosopher’s obsession with belief. 


2009 ◽  
Vol 74 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Dennis N. Kevill ◽  
Byoung-Chun Park ◽  
Jin Burm Kyong

The kinetics of nucleophilic substitution reactions of 1-(phenoxycarbonyl)pyridinium ions, prepared with the essentially non-nucleophilic/non-basic fluoroborate as the counterion, have been studied using up to 1.60 M methanol in acetonitrile as solvent and under solvolytic conditions in 2,2,2-trifluoroethan-1-ol (TFE) and its mixtures with water. Under the non- solvolytic conditions, the parent and three pyridine-ring-substituted derivatives were studied. Both second-order (first-order in methanol) and third-order (second-order in methanol) kinetic contributions were observed. In the solvolysis studies, since solvent ionizing power values were almost constant over the range of aqueous TFE studied, a Grunwald–Winstein equation treatment of the specific rates of solvolysis for the parent and the 4-methoxy derivative could be carried out in terms of variations in solvent nucleophilicity, and an appreciable sensitivity to changes in solvent nucleophilicity was found.


Author(s):  
Uriah Kriegel

Brentano’s theory of judgment serves as a springboard for his conception of reality, indeed for his ontology. It does so, indirectly, by inspiring a very specific metaontology. To a first approximation, ontology is concerned with what exists, metaontology with what it means to say that something exists. So understood, metaontology has been dominated by three views: (i) existence as a substantive first-order property that some things have and some do not, (ii) existence as a formal first-order property that everything has, and (iii) existence as a second-order property of existents’ distinctive properties. Brentano offers a fourth and completely different approach to existence talk, however, one which falls naturally out of his theory of judgment. The purpose of this chapter is to present and motivate Brentano’s approach.


Author(s):  
Tim Button ◽  
Sean Walsh

In this chapter, the focus shifts from numbers to sets. Again, no first-order set theory can hope to get anywhere near categoricity, but Zermelo famously proved the quasi-categoricity of second-order set theory. As in the previous chapter, we must ask who is entitled to invoke full second-order logic. That question is as subtle as before, and raises the same problem for moderate modelists. However, the quasi-categorical nature of Zermelo's Theorem gives rise to some specific questions concerning the aims of axiomatic set theories. Given the status of Zermelo's Theorem in the philosophy of set theory, we include a stand-alone proof of this theorem. We also prove a similar quasi-categoricity for Scott-Potter set theory, a theory which axiomatises the idea of an arbitrary stage of the iterative hierarchy.


Sign in / Sign up

Export Citation Format

Share Document