Two-disjoint-cycle-cover bipancyclicity of balanced hypercubes

2020 ◽  
Vol 381 ◽  
pp. 125305
Author(s):  
Chao Wei ◽  
Rong-Xia Hao ◽  
Jou-Ming Chang
Keyword(s):  
Author(s):  
Tzu-Liang Kung ◽  
Hon-Chan Chen ◽  
Chia-Hui Lin ◽  
Lih-Hsing Hsu

Abstract A graph $G=(V,E)$ is two-disjoint-cycle-cover $[r_1,r_2]$-pancyclic if for any integer $l$ satisfying $r_1 \leq l \leq r_2$, there exist two vertex-disjoint cycles $C_1$ and $C_2$ in $G$ such that the lengths of $C_1$ and $C_2$ are $l$ and $|V(G)| - l$, respectively, where $|V(G)|$ denotes the total number of vertices in $G$. On the basis of this definition, we further propose Ore-type conditions for graphs to be two-disjoint-cycle-cover vertex/edge $[r_1,r_2]$-pancyclic. In addition, we study cycle embedding in the $n$-dimensional locally twisted cube $LTQ_n$ under the consideration of two-disjoint-cycle-cover vertex/edge pancyclicity.


Author(s):  
Vera Traub ◽  
Thorben Tröbst

AbstractWe consider the capacitated cycle covering problem: given an undirected, complete graph G with metric edge lengths and demands on the vertices, we want to cover the vertices with vertex-disjoint cycles, each serving a demand of at most one. The objective is to minimize a linear combination of the total length and the number of cycles. This problem is closely related to the capacitated vehicle routing problem (CVRP) and other cycle cover problems such as min-max cycle cover and bounded cycle cover. We show that a greedy algorithm followed by a post-processing step yields a $$(2 + \frac{2}{7})$$ ( 2 + 2 7 ) -approximation for this problem by comparing the solution to a polymatroid relaxation. We also show that the analysis of our algorithm is tight and provide a $$2 + \epsilon $$ 2 + ϵ lower bound for the relaxation.


10.37236/7329 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Beka Ergemlidze ◽  
Ervin Győri ◽  
Abhishek Methuku

A linear cycle in a $3$-uniform hypergraph $H$ is a cyclic sequence of hyperedges such that any two consecutive hyperedges intersect in exactly one element and non-consecutive hyperedges are disjoint. Let $\alpha(H)$ denote the size of a largest independent set of $H$.We show that the vertex set of every $3$-uniform hypergraph $H$ can be covered by at most $\alpha(H)$ edge-disjoint linear cycles (where we accept a vertex and a hyperedge as a linear cycle), proving a weaker version of a conjecture of Gyárfás and Sárközy.


10.37236/9284 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Anna Kompišová ◽  
Robert Lukot'ka

Let $G$ be a bridgeless multigraph with $m$ edges and $n_2$ vertices of degree two and let $cc(G)$ be the length of its shortest cycle cover. It is known that if $cc(G) < 1.4m$ in bridgeless graphs with $n_2 \le m/10$, then the Cycle Double Cover Conjecture holds. Fan (2017)  proved that if $n_2 = 0$, then $cc(G) < 1.6258m$ and $cc(G) < 1.6148m$ provided that $G$ is loopless; morever, if $n_2 \le m/30$, then $cc(G) < 1.6467m$. We show that for a bridgeless multigraph with $m$ edges and $n_2$ vertices of degree two, $cc(G) < 1.6148m + 0.0741n_2$. Therefore, if $n_2=0$, then $cc(G) < 1.6148m$ even if $G$ has loops; if $n_2 \le m/30$, then $cc(G) < 1.6173m$; and if $n_2 \le m/10$, then $cc(G) < 1.6223|E(G)|$. Our improvement is obtained by randomizing Fan's construction.


Author(s):  
Yan Gu ◽  
Huy Tài Hà ◽  
Joseph W. Skelton

We show that attaching a whisker (or a pendant) at the vertices of a cycle cover of a graph results in a new graph with the following property: all symbolic powers of its cover ideal are Koszul or, equivalently, componentwise linear. This extends previous work where the whiskers were added to all vertices or to the vertices of a vertex cover of the graph.


Sign in / Sign up

Export Citation Format

Share Document