cycle cover
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Frank de Meijer ◽  
Renata Sotirov

We study the quadratic cycle cover problem (QCCP), which aims to find a node-disjoint cycle cover in a directed graph with minimum interaction cost between successive arcs. We derive several semidefinite programming (SDP) relaxations and use facial reduction to make these strictly feasible. We investigate a nontrivial relationship between the transformation matrix used in the reduction and the structure of the graph, which is exploited in an efficient algorithm that constructs this matrix for any instance of the problem. To solve our relaxations, we propose an algorithm that incorporates an augmented Lagrangian method into a cutting-plane framework by utilizing Dykstra’s projection algorithm. Our algorithm is suitable for solving SDP relaxations with a large number of cutting-planes. Computational results show that our SDP bounds and efficient cutting-plane algorithm outperform other QCCP bounding approaches from the literature. Finally, we provide several SDP-based upper bounding techniques, among which is a sequential Q-learning method that exploits a solution of our SDP relaxation within a reinforcement learning environment. Summary of Contribution: The quadratic cycle cover problem (QCCP) is the problem of finding a set of node-disjoint cycles covering all the nodes in a graph such that the total interaction cost between successive arcs is minimized. The QCCP has applications in many fields, among which are robotics, transportation, energy distribution networks, and automatic inspection. Besides this, the problem has a high theoretical relevance because of its close connection to the quadratic traveling salesman problem (QTSP). The QTSP has several applications, for example, in bioinformatics, and is considered to be among the most difficult combinatorial optimization problems nowadays. After removing the subtour elimination constraints, the QTSP boils down to the QCCP. Hence, an in-depth study of the QCCP also contributes to the construction of strong bounds for the QTSP. In this paper, we study the application of semidefinite programming (SDP) to obtain strong bounds for the QCCP. Our strongest SDP relaxation is very hard to solve by any SDP solver because of the large number of involved cutting-planes. Because of that, we propose a new approach in which an augmented Lagrangian method is incorporated into a cutting-plane framework by utilizing Dykstra’s projection algorithm. We emphasize an efficient implementation of the method and perform an extensive computational study. This study shows that our method is able to handle a large number of cuts and that the resulting bounds are currently the best QCCP bounds in the literature. We also introduce several upper bounding techniques, among which is a distributed reinforcement learning algorithm that exploits our SDP relaxations.


Author(s):  
Vera Traub ◽  
Thorben Tröbst

AbstractWe consider the capacitated cycle covering problem: given an undirected, complete graph G with metric edge lengths and demands on the vertices, we want to cover the vertices with vertex-disjoint cycles, each serving a demand of at most one. The objective is to minimize a linear combination of the total length and the number of cycles. This problem is closely related to the capacitated vehicle routing problem (CVRP) and other cycle cover problems such as min-max cycle cover and bounded cycle cover. We show that a greedy algorithm followed by a post-processing step yields a $$(2 + \frac{2}{7})$$ ( 2 + 2 7 ) -approximation for this problem by comparing the solution to a polymatroid relaxation. We also show that the analysis of our algorithm is tight and provide a $$2 + \epsilon $$ 2 + ϵ lower bound for the relaxation.


Author(s):  
Yan Gu ◽  
Huy Tài Hà ◽  
Joseph W. Skelton

We show that attaching a whisker (or a pendant) at the vertices of a cycle cover of a graph results in a new graph with the following property: all symbolic powers of its cover ideal are Koszul or, equivalently, componentwise linear. This extends previous work where the whiskers were added to all vertices or to the vertices of a vertex cover of the graph.


10.37236/9284 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Anna Kompišová ◽  
Robert Lukot'ka

Let $G$ be a bridgeless multigraph with $m$ edges and $n_2$ vertices of degree two and let $cc(G)$ be the length of its shortest cycle cover. It is known that if $cc(G) < 1.4m$ in bridgeless graphs with $n_2 \le m/10$, then the Cycle Double Cover Conjecture holds. Fan (2017)  proved that if $n_2 = 0$, then $cc(G) < 1.6258m$ and $cc(G) < 1.6148m$ provided that $G$ is loopless; morever, if $n_2 \le m/30$, then $cc(G) < 1.6467m$. We show that for a bridgeless multigraph with $m$ edges and $n_2$ vertices of degree two, $cc(G) < 1.6148m + 0.0741n_2$. Therefore, if $n_2=0$, then $cc(G) < 1.6148m$ even if $G$ has loops; if $n_2 \le m/30$, then $cc(G) < 1.6173m$; and if $n_2 \le m/10$, then $cc(G) < 1.6223|E(G)|$. Our improvement is obtained by randomizing Fan's construction.


2020 ◽  
Vol 381 ◽  
pp. 125305
Author(s):  
Chao Wei ◽  
Rong-Xia Hao ◽  
Jou-Ming Chang
Keyword(s):  

2020 ◽  
Vol 28 (4) ◽  
pp. 1845-1858 ◽  
Author(s):  
Lijia Deng ◽  
Wenzheng Xu ◽  
Weifa Liang ◽  
Jian Peng ◽  
Yingjie Zhou ◽  
...  

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Clement Dervieux ◽  
Dominique Poulalhon ◽  
Gilles Schaeffer

International audience Corner polyhedra were introduced by Eppstein and Mumford (2014) as the set of simply connected 3D polyhedra such that all vertices have non negative integer coordinates, edges are parallel to the coordinate axes and all vertices but one can be seen from infinity in the direction (1, 1, 1). These authors gave a remarkable characterization of the set of corner polyhedra graphs, that is graphs that can be skeleton of a corner polyhedron: as planar maps, they are the duals of some particular bipartite triangulations, which we call hereafter corner triangulations.In this paper we count corner polyhedral graphs by determining the generating function of the corner triangulations with respect to the number of vertices: we obtain an explicit rational expression for it in terms of the Catalan gen- erating function. We first show that this result can be derived using Tutte's classical compositional approach. Then, in order to explain the occurrence of the Catalan series we give a direct algebraic decomposition of corner triangu- lations: in particular we exhibit a family of almond triangulations that admit a recursive decomposition structurally equivalent to the decomposition of binary trees. Finally we sketch a direct bijection between binary trees and almond triangulations. Our combinatorial analysis yields a simpler alternative to the algorithm of Eppstein and Mumford for endowing a corner polyhedral graph with the cycle cover structure needed to realize it as a polyhedral graph.


Sign in / Sign up

Export Citation Format

Share Document