scholarly journals Solving the general Sylvester discrete-time periodic matrix equations via the gradient based iterative method

2016 ◽  
Vol 52 ◽  
pp. 87-95 ◽  
Author(s):  
Masoud Hajarian
2016 ◽  
Vol 21 (4) ◽  
pp. 533-549 ◽  
Author(s):  
Masoud Hajarian

The discrete-time periodic matrix equations are encountered in periodic state feedback problems and model reduction of periodic descriptor systems. The aim of this paper is to compute the generalized reflexive solutions of the general coupled discrete-time periodic matrix equations. We introduce a gradient-based iterative (GI) algorithm for finding the generalized reflexive solutions of the general coupled discretetime periodic matrix equations. It is shown that the introduced GI algorithm always converges to the generalized reflexive solutions for any initial generalized reflexive matrices. Finally, two numerical examples are investigated to confirm the efficiency of GI algorithm.


Filomat ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 2503-2520 ◽  
Author(s):  
Masoud Hajarian

The periodic matrix equations are strongly related to analysis of periodic control systems for various engineering and mechanical problems. In this work, a matrix form of the conjugate gradient for least squares (MCGLS) method is constructed for obtaining the least squares solutions of the general discrete-time periodic matrix equations ?t,j=1 (Ai,jXi,jBi,j + Ci,jXi+1,jDi,j)=Mi, i=1,2,.... It is shown that the MCGLS method converges smoothly in a finite number of steps in the absence of round-off errors. Finally two numerical examples show that the MCGLS method is efficient.


2016 ◽  
Vol 40 (2) ◽  
pp. 647-656 ◽  
Author(s):  
Masoud Hajarian

The periodic discrete-time matrix equations have wide applications in stability theory, control theory and perturbation analysis. In this work, the biconjugate residual algorithm is generalized to construct a matrix iterative method to solve the periodic discrete-time generalized coupled Sylvester matrix equations [Formula: see text] The constructed method is shown to be convergent in a finite number of iterations in the absence of round-off errors. By comparing with other similar methods in practical computation, we give numerical results to demonstrate the accuracy and the numerical superiority of the constructed method.


Sign in / Sign up

Export Citation Format

Share Document