periodic system
Recently Published Documents


TOTAL DOCUMENTS

746
(FIVE YEARS 139)

H-INDEX

27
(FIVE YEARS 4)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Vadim V. Varlamov ◽  
Larisa D. Pavlova ◽  
Olga S. Babushkina

The group theoretical description of the periodic system of elements in the framework of the Rumer–Fet model is considered. We introduce the concept of a single quantum system, the generating core of which is an abstract C*-algebra. It is shown that various concrete implementations of the operator algebra depend on the structure of the generators of the fundamental symmetry group attached to the energy operator. In the case of the generators of the complex shell of a group algebra of a conformal group, the spectrum of states of a single quantum system is given in the framework of the basic representation of the Rumer–Fet group, which leads to a group-theoretic interpretation of the Mendeleev’s periodic system of elements. A mass formula is introduced that allows giving the termwise mass splitting for the main multiplet of the Rumer–Fet group. The masses of elements of the Seaborg table (eight-periodic extension of the Mendeleev table) are calculated starting from the atomic number Z=3 and going to Z=220. The continuation of the Seaborg homology between lanthanides and actinides is established with the group of superactinides. A 10-periodic extension of the periodic table is introduced in the framework of the group-theoretic approach. The multiplet structure of the extended table’s periods is considered in detail. It is shown that the period lengths of the system of elements are determined by the structure of the basic representation of the Rumer–Fet group. The theoretical masses of the elements of 10th and 11th periods are calculated starting from Z=221 and going to to Z=364. The concept of hypertwistor is introduced.


2022 ◽  
pp. 355-378
Author(s):  
Brigitte Van Tiggelen ◽  
Annette Lykknes
Keyword(s):  

2021 ◽  
Author(s):  
Wilmer Leal ◽  
Eugenio J. Llanos ◽  
Andres Bernal ◽  
Peter F. Stadler ◽  
Jürgen Jost ◽  
...  

The periodic system arose from knowledge about substances, which constitute the chemical space. Despite the importance of this interplay, little is known about how the expanding space affected the system. Here we show, by analysing the space between 1800 and 1869, how the periodic system evolved until its formulation. We found that after an unstable period culminating around 1826, the system began to converge to a backbone structure, unveiled in the 1860s, which was clearly evident in the 1840s. Hence, contrary to the belief that the ``ripe moment'' to formulate the system was in the 1860s, it was in the 1840s. The evolution of the system is marked by the rise of organic chemistry in the first quarter of the nineteenth-century, which prompted the recognition of relationships among main group elements and obscured some of transition metals, which explains why the formulators of the periodic system struggled accommodating them. We also introduced an algorithm to adjust the chemical space according to different sets of atomic weights, which allowed for estimating the resulting periodic systems of chemists using one or the other nineteenth-century atomic weights. These weights produce orderings of the elements very similar to that of 1869, while providing different similarity relationships among the elements, therefore producing different periodic systems. By analysing these systems, from Dalton up to Mendeleev, we found that Gmelin's atomic weights of 1843 produce systems remarkably similar to that of 1869, a similarity that was reinforced by the atomic weights on the years to come.


2021 ◽  
pp. 1-26
Author(s):  
AS Magula ◽  

The topic of this article lies in the field of problems: substantiating the periodic system of isotopes and the principle of multilevel periodicity using quantum mechanical calculations, combining strong and electromagnetic interactions, and searching for the fundamental cause of periodicity in general. This article is a theoretical section and a continuation of the article: "Periodic system of isotopes", in which the system was checked against 10 types of experimental data, the periodic change of properties at the level of nuclei and the vertical symmetry of subgroups of isotopes were found. Periodic system of isotopes was constructed with the help of a special algorithm, the principle of multilevel periodicity of the atom, from the electrons to the nucleus. As a description of the multilevel periodicity, this paper presents a unified system of quantum numbers, which is used to describe both electron and nucleon shells (binomial probabilistic interpretation). With the binomial interpretation the problem of a particle in a one-dimensional potential well has been solved; quantummechanical calculations for the probability functions of the orbitals and periods of both electrons and nucleons have been performed - characteristic equations have been obtained, the projections of electronic orbitals have been reproduced and the binomial interpretation has been shown to correspond to the family of spherical harmonics. For the electron orbitals the calculation and analysis of solutions of the Schrödinger equation for the binomial interpretation of quantum numbers have been performed. The spatial nature of quantum numbers, for this interpretation, in the form of degrees of freedom is shown. Based on the principle of multilevel periodicity, expressions are derived and planar projections of nucleon nucleon orbitals are constructed, and similarity of the forms with electron orbitals is analyzed and revealed. A critical analysis of the modern spherical coordinate system was made, possible errors in the construction of electron orbitals were shown and, taking into account the drawbacks, two alternative spherical coordinate systems were proposed, for which Lame coefficients were calculated and Laplace equations were derived. As a search for the fundamental cause of multilevel periodicity, a spatial model with changing degrees of freedom 0-n is presented, its manifestation in nature (crystal forms) is found; a number of experiments are proposed; the predictions about the applicability of the multilevel periodicity principle in quark theory are made


Substantia ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 79-84
Author(s):  
Elena Ginak

This article is timed to the celebration of the International Year of the Periodic Table of Chemical Elements, declared by the UN and UNESCO in connection with the 150th anniversary of the discovery by D. I. Mendeleev of the Periodic Law of Chemical Elements (1869). The article highlights the metrological activity of D. I. Mendeleev and tells about how in the scientific metrological center, he created the Main Chamber of Weights and Measures. Now the D.I. Mendeleyev Institute for Metrology (VNIIM) preserves the memory of the life and activities of the great Russian scientist and encyclopedist. Based on the research carried out in the archives of St. Petersburg and the funds of Metrological Museum, the article for the first time details the history of the formation of the Mendeleev memorial complex on the territory of VNIIM. The contribution of the institute metrologists to the creation of such famous sights of St. Petersburg as the monument to D. I. Mendeleev (sculptor I. Ya. Ginzburg, 1932) and the mural (mosaic) «D. I. Mendeleev Periodic system of elements» (1935) on the occasion of the 100th anniversary of the scientist is shown. All peripteries, related to the installation of the monument - table are described: a selection of options for the arrangement of elements, decoration, manufacturer and manufacturing techniques, coordination with various organizations, solving financing issues.


Author(s):  
Ting Liu ◽  
Shi-Jian Peng ◽  
Jia-Yi Zhang ◽  
Ya-Xian Fan ◽  
Zhi-Yong Tao

2021 ◽  
Author(s):  
Ashu Sharma

Abstract Lyapunov-Floquet (L-F) transformations reduce linear ordinary differential equations with time-periodic coefficients (so-called linear time-periodic systems) to equations with constant coefficients. The present work proposes a simple approach to construct L-F transformations. The solution of a linear time-periodic system can be expressed as a product of an exponential term and a periodic term. Using this Floquet form of a solution, the ordinary differential equation corresponding to a linear time-periodic system reduces to an eigenvalue problem. Next, eigenanalysis is performed to obtain the general solution and subsequently, the state transition matrix of the time-periodic system is constructed. Then, the Lyapunov-Floquet theorem is used to compute L-F transformation. The inverse of L-F transformation is determined by defining the adjoint system to the time-periodic system. Mathieu equation is investigated in this work and L-F transformations and their inverse are generated for stable and unstable cases. These transformations are very useful in the design of controllers using time-invariant methods and in the bifurcation studies of nonlinear time-periodic systems.


2021 ◽  
pp. 1-46
Author(s):  
Magula AS ◽  

With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of the experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all the ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of “nuclear” orbitals: sn, dn, pn, fn. The origin of "magic" numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe and the prospects of its practical use are opened up


Sign in / Sign up

Export Citation Format

Share Document