scholarly journals Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system

Author(s):  
Tomasz Cieślak ◽  
Philippe Laurençot
2019 ◽  
Vol 167 (1) ◽  
pp. 231-259 ◽  
Author(s):  
Yuka Chiyoda ◽  
Masaaki Mizukami ◽  
Tomomi Yokota

1997 ◽  
Vol 8 (5) ◽  
pp. 525-532 ◽  
Author(s):  
ZHICHENG GUAN ◽  
XU-JIA WANG

In this paper we deal with the one-dimensional Stefan problemut−uxx =s˙(t)δ(x−s(t)) in ℝ ;× ℝ+, u(x, 0) =u0(x)with kinetic condition s˙(t)=f(u) on the free boundary F={(x, t), x=s(t)}, where δ(x) is the Dirac function. We proved in [1] that if [mid ]f(u)[mid ][les ]Meγ[mid ]u[mid ] for some M>0 and γ∈(0, 1/4), then there exists a global solution to the above problem; and the solution may blow up in finite time if f(u)[ges ] Ceγ1[mid ]u[mid ] for some γ1 large. In this paper we obtain the optimal exponent, which turns out to be √2πe. That is, the above problem has a global solution if [mid ]f(u)[mid ][les ]Meγ[mid ]u[mid ] for some γ∈(0, √2πe), and the solution may blow up in finite time if f(u)[ges ] Ce√2πe[mid ]u[mid ].


Sign in / Sign up

Export Citation Format

Share Document