Critical exponent in a Stefan problem with kinetic condition

1997 ◽  
Vol 8 (5) ◽  
pp. 525-532 ◽  
Author(s):  
ZHICHENG GUAN ◽  
XU-JIA WANG

In this paper we deal with the one-dimensional Stefan problemut−uxx =s˙(t)δ(x−s(t)) in ℝ ;× ℝ+, u(x, 0) =u0(x)with kinetic condition s˙(t)=f(u) on the free boundary F={(x, t), x=s(t)}, where δ(x) is the Dirac function. We proved in [1] that if [mid ]f(u)[mid ][les ]Meγ[mid ]u[mid ] for some M>0 and γ∈(0, 1/4), then there exists a global solution to the above problem; and the solution may blow up in finite time if f(u)[ges ] Ceγ1[mid ]u[mid ] for some γ1 large. In this paper we obtain the optimal exponent, which turns out to be √2πe. That is, the above problem has a global solution if [mid ]f(u)[mid ][les ]Meγ[mid ]u[mid ] for some γ∈(0, √2πe), and the solution may blow up in finite time if f(u)[ges ] Ce√2πe[mid ]u[mid ].

1996 ◽  
Vol 7 (2) ◽  
pp. 119-150 ◽  
Author(s):  
Miguel A. Herrero ◽  
Juan J. L. Velázquez

It is well-known that solutions to the one-dimensional supercooled Stefan problem (SSP) may exhibit blow-up in finite time. If we consider (SSP) in a half-line with zero flux conditions at t = 0, blow-up occurs if there exists T < ∞ such that limt↑Ts(t) > 0 and lim inft↑T⋅(t) = – ∞,s(t) being the interface of the problem under consideration. In this paper, we derive the asymptotics of solutions and interfaces near blow-up. We shall also use these results to discuss the possible continuation of solutions beyond blow-up.


1980 ◽  
Vol 125 (1) ◽  
pp. 295-311 ◽  
Author(s):  
Lev Rubinstein ◽  
Antonio Fasano ◽  
Mario Primicerio

2020 ◽  
Vol 20 (2) ◽  
pp. 437-458 ◽  
Author(s):  
Félix del Teso ◽  
Jørgen Endal ◽  
Juan Luis Vázquez

AbstractThe classical Stefan problem is one of the most studied free boundary problems of evolution type. Recently, there has been interest in treating the corresponding free boundary problem with nonlocal diffusion. We start the paper by reviewing the main properties of the classical problem that are of interest to us. Then we introduce the fractional Stefan problem and develop the basic theory. After that we center our attention on selfsimilar solutions, their properties and consequences. We first discuss the results of the one-phase fractional Stefan problem, which have recently been studied by the authors. Finally, we address the theory of the two-phase fractional Stefan problem, which contains the main original contributions of this paper. Rigorous numerical studies support our results and claims.


2018 ◽  
Vol 21 (4) ◽  
pp. 901-918 ◽  
Author(s):  
Sabrina Roscani ◽  
Domingo Tarzia

Abstract A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.


2009 ◽  
Vol 20 (2) ◽  
pp. 187-214 ◽  
Author(s):  
WAN CHEN ◽  
MICHAEL J. WARD

The dynamics and oscillatory instabilities of multi-spike solutions to the one-dimensional Gray-Scott reaction–diffusion system on a finite domain are studied in a particular parameter regime. In this parameter regime, a formal singular perturbation method is used to derive a novel ODE–PDE Stefan problem, which determines the dynamics of a collection of spikes for a multi-spike pattern. This Stefan problem has moving Dirac source terms concentrated at the spike locations. For a certain subrange of the parameters, this Stefan problem is quasi-steady and an explicit set of differential-algebraic equations characterizing the spike dynamics is derived. By analysing a nonlocal eigenvalue problem, it is found that this multi-spike quasi-equilibrium solution can undergo a Hopf bifurcation leading to oscillations in the spike amplitudes on an O(1) time scale. In another subrange of the parameters, the spike motion is not quasi-steady and the full Stefan problem is solved numerically by using an appropriate discretization of the Dirac source terms. These numerical computations, together with a linearization of the Stefan problem, show that the spike layers can undergo a drift instability arising from a Hopf bifurcation. This instability leads to a time-dependent oscillatory behaviour in the spike locations.


Author(s):  
Yuan-wei Qi

In this paper we study the Cauchy problem in Rn of general parabolic equations which take the form ut = Δum + ts|x|σup with non-negative initial value. Here s ≧ 0, m > (n − 2)+/n, p > max (1, m) and σ > − 1 if n = 1 or σ > − 2 if n ≧ 2. We prove, among other things, that for p ≦ pc, where pc ≡ m + s(m − 1) + (2 + 2s + σ)/n > 1, every nontrivial solution blows up in finite time. But for p > pc a positive global solution exists.


2003 ◽  
Vol 2003 (17) ◽  
pp. 995-1003 ◽  
Author(s):  
Marius Ghergu ◽  
Vicentiu Radulescu

We consider the one-dimensional logistic problem(rαA(|u′|)u′)′=rαp(r)f(u)on(0,∞),u(0)>0,u′(0)=0, whereαis a positive constant andAis a continuous function such that the mappingtA(|t|)is increasing on(0,∞). The framework includes the case wherefandpare continuous and positive on(0,∞),f(0)=0, andfis nondecreasing. Our first purpose is to establish a general nonexistence result for this problem. Then we consider the case of solutions that blow up at infinity and we prove several existence and nonexistence results depending on the growth ofpandA. As a consequence, we deduce that the mean curvature inequality problem on the whole space does not have nonnegative solutions, excepting the trivial one.


Sign in / Sign up

Export Citation Format

Share Document