signal production
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 74)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Cassondra Vernier ◽  
kathleen Zelle ◽  
Nicole Leitner ◽  
Xitong Liang ◽  
Sean Halloran ◽  
...  

Optimal mating decisions depend on the robust coupling of signal production and perception because independent changes in either could carry a fitness cost. However, since the perception and production of mating signals are often mediated by different tissues and cell types, the mechanisms that drive and maintain their coupling remain unknown for most animal species. Here, we show that in Drosophila, sensory perception and production of an inhibitory mating pheromone are co-regulated by Gr8a, a member of the Gustatory receptor gene family. Specifically, we found that the pleiotropic action of Gr8a independently regulates the perception of pheromones by the chemosensory systems of males and females, as well as their production in the fat body and oenocytes of males. These findings provide a relatively simple molecular explanation for how pleiotropic receptors maintain robust mating signaling systems at the population and species levels.


2021 ◽  
Author(s):  
Mabel Dedalem Tettey ◽  
Federico Rojas ◽  
Keith R Matthews

Trypanosomes causing African sleeping sickness use quorum-sensing (QS) to generate transmission-competent stumpy forms in their mammalian hosts. This density-dependent process is signalled by oligopeptides that stimulate the signal transduction pathway leading to stumpy formation. Using mass spectrometry analysis, peptidases released by trypanosomes were identified and, for 12 peptidases, their extracellular delivery was confirmed. Thereafter, the contribution of each peptidase to QS signal production was determined using systematic inducible overexpression in vivo, activity being confirmed to operate through the physiological QS signalling pathway. Gene knockout of the QS-active peptidases identified two enzymes, oligopeptidase B and metallocarboxypeptidase I, that significantly reduced QS when ablated individually. Further, a combinatorial gene knockout of both peptidases confirmed their dominance in the generation of the QS signal, with peptidase release of oligopeptidase B mediated via an unconventional protein secretion pathway. This identifies how the QS signal driving trypanosome virulence and transmission is generated in mammalian hosts.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Nigel K. Anderson ◽  
Martina Grabner ◽  
Lisa A. Mangiamele ◽  
Doris Preininger ◽  
Matthew J. Fuxjager

Many animals communicate by performing elaborate displays that are incredibly extravagant and wildly bizarre. So, how do these displays evolve? One idea is that innate sensory biases arbitrarily favour the emergence of certain display traits over others, leading to the design of an unusual display. Here, we study how physiological factors associated with signal production influence this process, a topic that has received almost no attention. We focus on a tropical frog, whose males compete for access to females by performing an elaborate waving display. Our results show that sex hormones like testosterone regulate specific display gestures that exploit a highly conserved perceptual system, evolved originally to detect ‘dangerous' stimuli in the environment. Accordingly, testosterone makes certain gestures likely to appear more perilous to rivals during combat. This suggests that hormone action can interact with effects of sensory bias to create an evolutionary optimum that guides how display exaggeration unfolds.


Author(s):  
Feng Dai ◽  
Bin Liu

This paper deals with the Keller–Segel–Navier–Stokes model with indirect signal production in a three-dimensional (3D) bounded domain with smooth boundary. When the logistic-type degradation here is weaker than the usual quadratic case, it is proved that for any sufficiently regular initial data, the associated no-flux/no-flux/no-flux/Dirichlet problem possesses at least one globally defined solution in an appropriate generalized sense, and that this solution is uniformly bounded in [Formula: see text] with any [Formula: see text]. Moreover, under an explicit condition on the chemotactic sensitivity, these solutions are shown to stabilize toward the corresponding spatially homogeneous state in the sense of some suitable norms. We underline that the same results were established for the corresponding system with direct signal production in a well-known result if the degradation is quadratic. Our result rigorously confirms that the indirect signal production mechanism genuinely contributes to the global solvability of the 3D Keller–Segel–Navier–Stokes system.


2021 ◽  
Vol 376 (1835) ◽  
pp. 20200340
Author(s):  
Henry D. Legett ◽  
Ikkyu Aihara ◽  
X. E. Bernal

In dense mating aggregations, such as leks and choruses, acoustic signals produced by competing male conspecifics often overlap in time. When signals overlap at a fine temporal scale the ability of females to discriminate between individual signals is reduced. Yet, despite this cost, males of some species deliberately overlap their signals with those of conspecifics, synchronizing signal production in the chorus. Here, we investigate two hypotheses of synchronized mating signals in a Japanese treefrog ( Buergeria japonica ): (1) increased female attraction to the chorus (the beacon effect hypothesis) and (2) reduced attraction of eavesdropping predators (the eavesdropper avoidance hypothesis). Our results from playback experiments on female frogs and eavesdropping micropredators (midges and mosquitoes) support both hypotheses. Signal transmission and female phonotaxis experiments suggest that away from the chorus, synchronized calls are more attractive to females than unsynchronized calls. At the chorus, however, eavesdroppers are less attracted to calls that closely follow an initial call, while female attraction to individual signals is not affected. Therefore, synchronized signalling likely benefits male B. japonica by both increasing attraction of females to the chorus and reducing eavesdropper attacks. These findings highlight how multiple selective pressures likely promoted the evolution and maintenance of this behaviour. This article is part of the theme issue ‘Synchrony and rhythm interaction: from the brain to behavioural ecology’.


Sign in / Sign up

Export Citation Format

Share Document