scholarly journals Transvaginal ultrasound-guided cumulus oocyte complexes aspiration and in vitro embryo production in suckled beef and lactating dairy cattle on pasture-based management conditions

2011 ◽  
Vol 129 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
M.H. Ratto ◽  
O.A. Peralta ◽  
G. Mogollon ◽  
P. Strobel ◽  
J. Correa
2006 ◽  
Vol 18 (2) ◽  
pp. 137
Author(s):  
A. Lucas-Hahn ◽  
E. Lemme ◽  
K.-G. Hadeler ◽  
H.-G. Sander ◽  
H. Niemann

The reproductive performance of cloned cattle was investigated by assessing the efficiency of transvaginal ultrasound-guided ovum pickup (OPU) and embryo production in vitro. Fetal fibroblasts from the endangered species, German Blackpied Cattle, had been used for nuclear transfer to produce three live cloned offspring (Lucas-Hahn et al. 2002 Theriogenology 57, 433). In the three cloned animals at 12–20 months of age, OPU was performed once per week and the total number of collected oocytes was recorded. In the case of Blondie, the procedure was terminated due to too small ovaries associated with insufficient function. Oocytes suitable for IVF were matured in vitro for 24 h and fertilized in vitro with the semen of a fertile bull. Oocytes derived from abbatoir ovaries were processed in parallel as controls. Embryos were in vitro-cultured in SOFaaBSA medium. Cleavage and developmental rates up to the morula/blastocyst stage were recorded in all groups. Statistical significance was tested using ANOVA and the Student-Newman-Keuls test. The results are presented in Table 1. Embryos from clones had lower cleavage and blastocyst rates compared to those derived from abattoir oocytes. However, results may have been confounded by potential OPU effects. Some of the blastocysts produced from Blacky (n = 5) and Paula (n = 2) were transferred to recipients. Two pregnancies resulted from the Paula transfers. The two male calves were delivered normally. After the completion of this experiment, all three cloned animals were artificially inseminated, became pregnant, delivered healthy calves, and are pregnant again at present. Further studies are needed to explore the fertility of cattle derived from somatic cloning. Table 1. OPU and in vitro embryo production in cloned cattle


2002 ◽  
Vol 45 (1) ◽  
pp. 99-108
Author(s):  
J. A. Carter ◽  
S. Bellow ◽  
M. Meintjes ◽  
O. Perez ◽  
E. Ferguson ◽  
...  

Abstract. reproductive potential in genetically valuable animals (BEAL et al., 1992). Now that repeatable oocyte retrieval methods are being fine-tuned, it is likely these procedures will become routinely used to obtain oocytes for further gamete and embryo research and also by seedstock producers for in vitro embryo production from farm animals in the commercial sector. The use of transvaginal ultrasound-guided oocyte aspiration and IVF procedure does offer an alternative to cattle producers who have genetically valuable cows that for some reason are unable to produce viable embryos through standard embryo collection procedures. This technology can be used on oocytes harvested from older ovulating or nonovulating cows, females with physical injuries (e.g., fractured leg) and problem cows having an abnormal cervix. Good success has been reported using IVF procedures on oocytes obtained from supplemental follicles of cows with cystic ovarian disease. With IVF the potential exists for more embryos to be produced in a shorter period of time, since the procedure can be repeated on the same cow 3 to 4 times or more a month. At this station, we are harvesting oocytes from early postpartum (< 40 days) beef and dairy cattle, before the female begins cyclic activity. The approach allows the opportunity to produce one or more extra calves from the cow before she is mated for a natural pregnancy. Currently, transvaginal ultrasound-guided oocyte aspiration is now being used to harvest valuable oocytes from minor farm animal breeds, from domestic females representing rare bloodlines, clinically infertile females and reproductively senescent cows. Research continues to find applications for this technology, including harvesting oocytes from young prepubertal heifers and early postpartum beef cows for in vitro embryo production. The use of ultrasound-guided oocyte aspiration should not be overlooked to obtain oocytes for in vitro embryo production and to aid in germplasm preservation of endangered exotic species.


2019 ◽  
Vol 31 (12) ◽  
pp. 1926
Author(s):  
Lino Fernando Campos-Chillon ◽  
Jan Martin ◽  
Joy L. Altermatt

Recently, the demand for invitro embryo production in the horse has increased worldwide. Most clinical transvaginal ultrasound-guided ovum pick-up (OPU) procedures are performed in non-pregnant donor mares, and few experimental studies have described invitro embryo production from oocytes of pregnant donors 21–150 days in gestation. This report discusses OPU, follicular growth and invitro embryo production in a pregnant mare during late gestation.


1997 ◽  
Vol 47 (1) ◽  
pp. 157 ◽  
Author(s):  
C.Guyader Joly ◽  
S. Ponchon ◽  
J.M. Thuard ◽  
M. Durand ◽  
M. Nibart ◽  
...  

1991 ◽  
Vol 9 (9) ◽  
pp. 844-847 ◽  
Author(s):  
Paul Krimpenfort ◽  
Adriana Rademakers ◽  
Will Eyestone ◽  
Adriaan van der Schans ◽  
Sandra van den Broek ◽  
...  

1996 ◽  
Vol 1996 ◽  
pp. 68-68
Author(s):  
K.L. Goodhand ◽  
R.G. Watt ◽  
M.E. Staines ◽  
L.C. Higgins ◽  
P.J. Broadbent ◽  
...  

The combination of in vivo recovery of oocytes using transvaginal ultrasound guided aspiration and subsequent in vitro embryo production can be used to increase the rate of genetic change for efficiency of beef production by increasing selection intensity and reducing generation interval. The total number of oocytes recovered by aspiration and embryos produced is directly proportional to the number of aspiration sessions whether recovery takes place once or twice weekly. Pre-treatment of oocyte donors with FSH has been shown to improve the number of follicles available for aspiration but effects on embryo production have been conflicting (Bungartz et al., 1995; Goodhand et al., in press). The objective of this experiment was to compare the effect on embryo production of frequency of follicular aspiration and pre-treatment of donor cattle with FSH.


2016 ◽  
Vol 28 (2) ◽  
pp. 248 ◽  
Author(s):  
L. Ferré ◽  
Y. Bogliotti ◽  
J. Chitwood ◽  
M. Kjelland ◽  
P. Ross

Transvaginal ultrasound needle-guided ovum pick-up (OPU) and in vitro embryo production (IVP) offer a reliable alternative to conventional embryo transfer to produce offspring. The success of OPU/IVP greatly depends on the number and quality of retrieved oocytes. The aim of this study was to compare OPU/IVP performance from stimulated Holstein cows. Holstein (Bos taurus) >8-year-old pluriparous open dry cows (n = 28) were used for OPU as oocyte donors. Follicular waves in all groups were synchronized by gonadotropin-releasing hormone (GnRH), prostaglandin F2α (PGF), and CIDR administrated on Day 0, followed by stimulation treatments 48 h later. No pre-synch was used. Total hormone dosage were administrated as follows: Group 1: pFSH = 180 mg (Folltropin, Bioniche, Belleville, ON, Canada; n = 7), Group 2: pFSH/LH = 500 IU (Pluset, Calier, Barcelona, Spain; n = 7), Group 3: eCG = 1500 IU (eCG, Biogénesis-Bagó, Buenos Aires, Argentina; n = 7) and Group 4: Control (n = 7), no stimulation. All injections were performed intramuscularly (i.m.) twice a day, during three days. OPU was performed 48 (Group 1) or 24 h (Group 2 and 3) after the last injection. The control group received saline solution i.m. Follicles were classified according to diameter in 4 categories: small (2–5 mm); medium (6–9 mm); large (10–14 mm) and extra large (>15 mm). A Mindray DP-30 Vet (Mindray Medical, Shenzhen, China) was equipped with a micro-convex transducer 5.0- to 8.5-MHz probe along with a disposable 21G needle. The OPU flow rate was 15 mL min–1. Retrieved oocytes were classified according to IETS guidelines as viable (grade 1 + 2) and non-viable (grade 3 + 4). The IVP protocol was according to that in Reprod. Fertil. Devel. (2004, 16, 253). Fertilization (Day 0) was carried out using female sex-sorted semen selected with a discontinuous density gradient (PureSperm, Nidacon, Mölndal, Sweden) and diluted to 1 × 106 sperm mL–1. ANOVA was used for comparisons of mean values and a chi-squared test was used for proportions. Results are presented in the Table 1. In conclusion, pFSH stimulation before ovum pick-up in Holstein cows increased the number of collected and viable oocytes, cleavage, embryo development, and hatching rates in comparison to other follicle stimulation hormones and non-stimulation. A cost-benefit analysis of these methods could be valuable in order to inform whether or not a stimulation protocol is necessary for a commercial IVP operation. Table 1.Numbers of follicles, collected and viable oocytes, cleavage rate, blastocysts and hatching rate


2018 ◽  
Vol 30 (1) ◽  
pp. 206
Author(s):  
M. P. Cervantes ◽  
G. P. Adams ◽  
M. Anzar ◽  
J. M. Palomino ◽  
G. F. Mastromonaco

This study was done to determine the feasibility of in vitro embryo production in wood bison during the anovulatory season, without ovarian superstimulation or follicle wave synchronization, to simulate collection conditions in a wild or field setting. The experiment provided the opportunity to compare embryo development using 2 different maturation media and incubator systems. The cumulus-oocyte complexes (COC) were collected by transvaginal ultrasound-guided follicle aspiration during May from non-superstimulated bison. Compact COC were allocated to 2 groups and matured in standard maturation medium using a portable gassed incubator, or in commercial medium using a portable non-gassed incubator. In the former (Standard), the COC were placed in a round-bottomed tube containing TCM-199 medium with 5% calf serum, 5 μg mL−1 LH, 0.5 μg mL−1 FSH, and 0.05 μg mL−1 gentamicin, and the tube was placed in a portable incubator with 5% CO2. In the latter (Commercial), COC were placed in a round-bottom tube containing the commercial medium (Boviteq, Saint-Hyacinthe, QC, Canada), and placed in a portable incubator without CO2. After 24 h of maturation, oocytes were fertilized in vitro (Day 0) in Brackett-Oliphant medium at 38.5°C in a conventional incubator with 5% CO2 humidified atmosphere. Presumptive zygotes were cultured in CR1aa plus 5% calf serum, at 38.5°C and in 5% CO2, 5% O2, and 90% N2 and high humidity. Cleavage was recorded on Day 3 and embryo development was recorded on Day 7. Cleavage and transferable embryo rates (calculated from the total number of oocytes submitted to IVF) were compared between groups by chi-squared test. No difference in cleavage rates was observed between Standard and Commercial treatment groups [68.1 (32/47) v. 79.2% (57/72), respectively; P = 0.25], nor in morula plus blastocyst rates on Day 7 (36.2 v. 45.8%, respectively; P = 0.39). However, the rate of transferable embryos (grade 1 and grade 2) on Day 7 was higher in the Commercial group (38.9 v. 12.8%; P < 0.01). Of the COC in the Commercial group, a higher number of morula plus blastocyst were observed to be compact good COC (>3 layers of cumulus cells) than compact regular COC (1-3 layers of cumulus cells) (66.7 v. 31.0% respectively; P < 0.05), along with a higher number of transferable embryos on Day 7 (60.0 v. 23.8%, respectively; P < 0.05). In conclusion, wood bison oocytes collected during the anovulatory season from non-superstimulated, non-synchronized bison and matured in vitro using portable incubators were competent to develop to the morula and blastocyst stages following IVF and culture. These results are important for future plans that require transporting oocytes from remote collection sites to the IVF laboratory, particularly with respect to the effectiveness of commercial maturation media which does not require CO2 supplementation. Research was supported by the Natural Sciences and Engineering Research Council of Canada.


1997 ◽  
Vol 47 (1) ◽  
pp. 161 ◽  
Author(s):  
S. Lacaze ◽  
B.Marquant-Le Guienne ◽  
N. Delalleau ◽  
L. Richet ◽  
S. Maunas ◽  
...  

2018 ◽  
Vol 30 (1) ◽  
pp. 187
Author(s):  
G. G. Lazo ◽  
S. Lacaze ◽  
D. Di Scala

Lidia cattle are a breed of Bos taurus that has been selected specially to produce bulls with the temperament and aggressiveness necessary to face a bullfighter in a ring. The genetic wealth of this fighting breed is divided into small lineages, traditionally called encastes, which has resulted in the risk of a loss of genetic variability (Ministerio de Medio Ambiente y Medio Rural y Marino, 2011; http://www.toroslidia.com/wp-content/uploads/2012/01/Programa-de-mejora-de-la-Raza-Bovina-de-Lidia.pdf). The technique to produce embryos in vitro may be a useful tool in the conservation of genetic material from this breed in a selection program. The aims of the study were to demonstrate the effectiveness of in vitro production of Lidia cattle embryos, and to evaluate variation in embryo production among males of the breed. Lidia cows, 7 to 13 years of age (n = 12), were used in an ovum pick-up (OPU)-in vitro production (IVP) program in the south of France. Ovarian superstimulation was induced with decreasing doses of pFSH (Stimufol; Reprobiol, Liège, Belgium) twice daily over 3 days (total dose: 350 µg). Transvaginal ultrasound-guided collection of cumulus–oocyte complexes (COC) was done 12 to 24 h after the last FSH injection. The COC were evaluated immediately after OPU and placed into 2.0-mL tubes (Corning Inc., Corning, NY, USA) containing 500 µL of maturation medium. A gas mix (5% CO2 in air) was injected into each tube and the tube was sealed tightly and placed in a portable incubator (Minitub, Tiefenbach, Germany) at 38.0°C for 12 h. On arrival in the Auriva IVP laboratory, tubes were opened and placed into an incubator with 5% CO2 at 38.5°C at maximum humidity to complete a 24-h maturation period. Semen was collected by electro-ejaculation previously from 5 different Lidia bulls (A, B, C, D, and E) and had been frozen by the same technique. The COC were fertilized with the frozen–thawed semen in TALP medium. Presumed zygotes were cultured in SOF medium (Minitub) to Day 7 (Day 0 = fertilization day) at 38.5°C in a 5% CO2, 5% O2, and 90% N2 atmosphere with maximum humidity. A total of 19 OPU/IVP sessions were performed, 5 cows were collected once, and 7 cows collected twice, and 143 COC were processed for in vitro embryo production. Blastocyst and expanded blastocyst numbers were recorded on Day 7. Oocyte recovery and embryo production by bull were analysed by ANOVA and blastocyst yield by Chi-square. The number (mean ± SEM) of oocytes allocated to each bull per IVP session was (P > 0.05): bull A (4.5 ± 1.9), bull B (5.8 ± 2.1), bull C (9.3 ± 2.5), bull D (6.5 ± 2.1), and bull E (7.0 ± 4.4). The cleavage rate differed among bulls (P < 0.05): bull A (4%), B (80%), C (89%), D (81%), and E (76%). The number (mean ± SEM) of blastocysts was lowest (P < 0.05) for bull A and highest (P < 0.05) for bull C (0, 3.7 ± 1.8, 7.0 ± 1.0, 4.3 ± 1.3, 4.7 ± 2.3 for bulls A to E, respectively). The blastocyst development rate (number of blastocysts/number of oocytes entering the IVF process) was also different among bulls (0, 63, 75, 65, and 67%, respectively; P < 0.05). Although there was a male effect on blastocyst production, our data demonstrate that successful in vitro embryo production in Lidia cattle is possible and suggests that this tool would be useful in a genetic program for the multiplication and the conservation of this breed.


Sign in / Sign up

Export Citation Format

Share Document