scholarly journals The art of innovation: clinical development of trastuzumab deruxtecan and redefining how antibody-drug conjugates target HER2-positive cancers

2020 ◽  
Vol 31 (3) ◽  
pp. 430-434 ◽  
Author(s):  
A. Yver ◽  
T. Agatsuma ◽  
J.-C. Soria
Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2898
Author(s):  
Chiara Corti ◽  
Federica Giugliano ◽  
Eleonora Nicolò ◽  
Liliana Ascione ◽  
Giuseppe Curigliano

Metastatic breast cancer (BC) is currently an incurable disease. Besides endocrine therapy and targeted agents, chemotherapy is often used in the treatment of this disease. However, lack of tumor specificity and toxicity associated with dose exposure limit the manageability of cytotoxic agents. Antibody–drug conjugates (ADCs) are a relatively new class of anticancer drugs. By merging the selectivity of monoclonal antibodies with the cytotoxic properties of chemotherapy, they improve the therapeutic index of antineoplastic agents. Three core components characterize ADCs: the antibody, directed to a target antigen; the payload, typically a cytotoxic agent; a linker, connecting the antibody to the payload. The most studied target antigen is HER2 with some agents, such as trastuzumab deruxtecan, showing activity not only in HER2-positive, but also in HER2-low BC patients, possibly due to a bystander effect. This property to provide a cytotoxic impact also against off-target cancer cells may overcome the intratumoral heterogeneity of some target antigens. Other cancer-associated antigens represent a strategy for the development of ADCs against triple-negative BC, as shown by the recent approval of sacituzumab govitecan. In this review, we discuss the current landscape of ADC development for the treatment of BC, as well as the possible limitations of this treatment.


Author(s):  
Frederik Marmé

Background Despite the advances that have been made to improve conventional chemotherapies, their use is limited by a narrow therapeutic window based on off-target toxicities. Antibody-drug-conjugates (ADCs) are composed of an antibody and a toxic payload covalently coupled by a chemical linker. They constitute an elegant means to tackle the limitations of conventional chemotherapeutics by selectively delivering a highly toxic payload directly to target cells and thereby increasing efficacy of the delivered cytotoxic but at the same time limiting systemic exposure and toxicities. As such they appear inspired by Paul Ehrlich´s concept of a “magic bullet”, which he envisioned as drugs that go directly to their target to attack pathogens but remain harmless in healthy tissues. Summary The concept of conjugating drugs to antibodies via chemical linkers is not new. As early as in the 1960s researchers started to investigate such ADCs in animal models and first clinical trials based on mouse antibodies began in the 1980s. Although the concept appears relatively straightforward, ADCs are highly complex molecules, and it took several decades of research and development until the first ADC became approved by the FDA in 2000 and the second followed not until 11 years later. The development of an effective ADC is highly demanding, and each individual component of an ADC must be optimized: the target, the antibody, the linker and its conjugation chemistry as well as the cytotoxic payload. Today there are 9 approved ADCs overall and 3 for breast cancer. So, the pace of development seems to pick up with over 100 candidates in various stages of clinical development. Many ADCs of the newest generation are optimized to elicit a so-called bystander effect, to increase efficacy and tackle heterogneous antigen expression. This approach requires a balancing of efficacy and systemic toxicity. Hence, ADCs based on their complex biology cause relevant toxicities, which are characteristic for each specific compound and may include hematologic toxicities, elevated transaminases, gastrointestinal events, pneumonitis but also ocular toxicities as well as others many physicians may initially not be very familiar with. Management of the side effects will be key to the successful clinical use of these potent drugs. Key Messages This review focusses on the clinical experience with ADCs approved in breast cancer as well as promising candidates in late-stage clinical development. We will discuss the mode of action, biology, and composition of ADCs and how each of these crucial components influences their properties and efficacy.


2018 ◽  
Author(s):  
Vincent Lacasse ◽  
Jeffrey V. Leyton ◽  
Simon Beaudoin ◽  
Mark Barok ◽  
Heikki Joensuu

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4764
Author(s):  
Umbreen Hafeez ◽  
Sagun Parakh ◽  
Hui K. Gan ◽  
Andrew M. Scott

Antibody–drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.


2012 ◽  
Vol 70 (3) ◽  
pp. 439-449 ◽  
Author(s):  
Diego A. Gianolio ◽  
Cecile Rouleau ◽  
William E. Bauta ◽  
Dennis Lovett ◽  
William R. Cantrell ◽  
...  

2020 ◽  
Vol 6 (23) ◽  
pp. eaba6752 ◽  
Author(s):  
Zhefu Dai ◽  
Xiao-Nan Zhang ◽  
Fariborz Nasertorabi ◽  
Qinqin Cheng ◽  
Jiawei Li ◽  
...  

Most of the current antibody-drug conjugates (ADCs) in clinic are heterogeneous mixtures. To produce homogeneous ADCs, established procedures often require multiple steps or long reaction times. The introduced mutations or foreign sequences may cause high immunogenicity. Here, we explore a new concept of transforming CD38 enzymatic activity into a facile approach for generating site-specific ADCs. This was achieved through coupling bifunctional antibody-CD38 fusion proteins with designer dinucleotide-based covalent inhibitors with stably attached payloads. The resulting adenosine diphosphate–ribosyl cyclase–enabled ADC (ARC-ADC) with a drug-to-antibody ratio of 2 could be rapidly generated through single-step conjugation. The generated ARC-ADC targeting human epidermal growth factor receptor 2 (HER2) displays excellent stability and potency against HER2-positive breast cancer both in vitro and in vivo. This proof-of-concept study demonstrates a new strategy for production of site-specific ADCs. It may provide a general approach for the development of a novel class of ADCs with potentially enhanced properties.


Sign in / Sign up

Export Citation Format

Share Document