Cancers
Latest Publications


TOTAL DOCUMENTS

11970
(FIVE YEARS 11201)

H-INDEX

73
(FIVE YEARS 51)

Published By Mdpi Ag

2072-6694
Updated Saturday, 18 September 2021

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4660
Author(s):  
Sandra van Wilpe ◽  
Victoria Wosika ◽  
Laura Ciarloni ◽  
Sahar Hosseinian Ehrensberger ◽  
Rachel Jeitziner ◽  
...  

Although immune checkpoint inhibitors improve median overall survival in patients with metastatic urothelial cancer (mUC), only a minority of patients benefit from it. Early blood-based response biomarkers may provide a reliable way to assess response weeks before imaging is available, enabling an early switch to other therapies. We conducted an exploratory study aimed at the identification of early markers of response to anti-PD-1 in patients with mUC. Whole blood RNA sequencing and phenotyping of peripheral blood mononuclear cells were performed on samples of 26 patients obtained before and after 2 to 6 weeks of anti-PD-1. Between baseline and on-treatment samples of patients with clinical benefit, 51 differentially expressed genes (DEGs) were identified, of which 37 were upregulated during treatment. Among the upregulated genes was PDCD1, the gene encoding PD-1. STRING network analysis revealed a cluster of five interconnected DEGs which were all involved in DNA replication or cell cycle regulation. We hypothesized that the upregulation of DNA replication/cell cycle genes is a result of T cell proliferation and we were able to detect an increase in Ki-67+ CD8+ T cells in patients with clinical benefit (median increase: 1.65%, range −0.63 to 7.06%, p = 0.012). In patients without clinical benefit, no DEGs were identified and no increase in Ki-67+ CD8+ T cells was observed. In conclusion, whole blood transcriptome profiling identified early changes in DNA replication and cell cycle regulation genes as markers of clinical benefit to anti-PD-1 in patients with urothelial cancer. Although promising, our findings require further validation before implementation in the clinic.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4642
Author(s):  
Tomoyuki Momma ◽  
Hirokazu Okayama ◽  
Yasuyuki Kanke ◽  
Satoshi Fukai ◽  
Hisashi Onozawa ◽  
...  

Background: Neoadjuvant chemoradiotherapy (nCRT) followed by surgery is widely used for patients with locally advanced rectal cancer. However, response to nCRT varies substantially among patients, highlighting the need for predictive biomarkers that can distinguish non-responsive from responsive patients before nCRT. This study aimed to build novel multi-gene assays for predicting nCRT response, and to validate our signature and previously-reported signatures in multiple independent cohorts. Methods: Three microarray datasets of pre-therapeutic biopsies containing a total of 61 non-responders and 53 responders were used as the discovery cohorts to screen for genes that were consistently associated with nCRT response. The predictive values of signatures were tested in a meta-analysis using six independent datasets as the validation cohorts, consisted of a total of 176 non-responders and 99 responders. Results: We identified four genes, including BRCA1, GPR110, TNIK, and WDR4 in the discovery cohorts. Although our 4-gene signature and nine published signatures were evaluated, they were unable to predict nCRT response in the validation cohorts. Conclusions: Although this is one of the largest studies addressing the validity of gene expression-based classifiers using pre-treatment biopsies from patients with rectal cancer, our findings do not support their clinically meaningful values to be predictive of nCRT response.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4648
Author(s):  
Eva Lhuissier ◽  
Juliette Aury-Landas ◽  
Marion Lenté ◽  
Karim Boumediene ◽  
Catherine Baugé

Background: We have previously shown that 3-Deazaneplanocin A (DZNep) induces apoptosis in chondrosarcomas. Herein, we tested whether the combination of this epigenetic drug to a standard anticancer therapy may enhance the response to each drug in these bone tumors. Methods: Two chondrosarcoma cell lines (SW1353 and JJ012) were cultured in the presence of DZNep and/or cisplatin. Cell growth was evaluated by counting viable cells, and apoptosis was determined by Apo2.7 expression by flow cytometry. In vivo, the antitumoral effect of the DZNep/cisplatin combination was assessed through measurements of tumor volume of JJ012 xenografts in nude mice. Results: In vitro, the DZNep/cisplatin combination reduced cell survival and increased apoptosis compared to each drug alone in chondrosarcomas, but not in normal cells (chondrocytes). This enhancement of the antitumoral effect of the DZNep/cisplatin combination required a priming incubation with DZNep before the co-treatment with DZNep/cisplatin. Furthermore, in the chondrosarcoma xenograft mice model, the combination of both drugs more strongly reduced tumor growth and induced more apoptosis in tumoral cells than each of the drugs alone. Conclusion: Our results show that DZNep exposure can presensitize chondrosarcoma cells to a standard anticancer drug, emphasizing the promising clinical utilities of epigenetic-chemotherapeutic drug combinations in the future treatment of chondrosarcomas.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4641
Author(s):  
Ranjan Pathak ◽  
Victoria M. Villaflor

With the advent of potent EGFR tyrosine kinase inhibitors (TKIs), the treatment landscape of EGFR-mutant lung adenocarcinomas has changed drastically in recent years. However, the development of resistance to EGFR TKIs remains a critical barrier to improving survival in these patients. Histologic transformations to small cell lung carcinoma, large cell neuroendocrine carcinoma, squamous cell carcinoma, and the sarcomatoid phenotype have been increasingly recognized as important mechanisms of resistance. In this article, we summarize the known biological bases for such phenotypic switches in regard to EGFR TKIs and describe novel pathways that might be harnessed to develop effective novel therapies for patients with EGFR-mutant non-small cell lung cancers.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4653
Author(s):  
Shruti G. Dighe ◽  
Li Yan ◽  
Sarbajit Mukherjee ◽  
Cailey S. McGillicuddy ◽  
Karen L. Hulme ◽  
...  

Purpose: The incidence of esophageal adenocarcinoma (EAC) has risen substantially in recent decades, while the average 5-year survival remains only ~20%. Disease stage and treatment are the strongest prognostic factors. The role of lifestyle factors in relation to survival remains uncertain, with a handful of studies to date investigating associations with obesity, smoking, physical activity, diet, or medications. Methods: This study included patients diagnosed with primary adenocarcinoma of the esophagus, gastroesophageal junction, or cardia (N = 371) at Roswell Park Comprehensive Cancer Center between 2003 and 2019. Leveraging extensive data abstracted from electronic medical records, epidemiologic questionnaires, and a tumor registry, we analyzed clinical, behavioral, and environmental exposures and evaluated stage-specific associations with survival. Survival distributions were visualized using Kaplan–Meier curves. Cox proportional hazards regression models adjusted for age, sex, stage, treatment, and comorbidities were used to estimate the association between each exposure and all-cause or cancer-specific mortality. Results: Among patients presenting with localized/regional tumors (stages I–III), current smoking was associated with increased overall mortality risk (HR = 2.5 [1.42–4.53], p = 0.002), while current physical activity was linked to reduced risk (HR = 0.58 [0.35–0.96], p = 0.035). Among patients with stage IV disease, individuals reporting pre-diagnostic use of statins (HR = 0.62 [0.42–0.92], p = 0.018) or NSAIDs (HR = 0.61 [0.42–0.91], p = 0.016) had improved overall survival. Exploratory analyses suggested that high pre-diagnostic dietary consumption of broccoli, carrots, and fiber correlated with prolonged overall survival in patients with localized/regional disease. Conclusion: Our data suggest that lifestyle exposures may be differentially associated with EAC survival based on disease stage. Future investigation of larger, diverse patient cohorts is essential to validate these findings. Our results may help inform the development of lifestyle-based interventions to improve EAC prognosis and quality of life.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4638
Author(s):  
Abdalla Ibrahim ◽  
Yousif Widaatalla ◽  
Turkey Refaee ◽  
Sergey Primakov ◽  
Razvan L. Miclea ◽  
...  

Handcrafted radiomic features (HRFs) are quantitative imaging features extracted from regions of interest on medical images which can be correlated with clinical outcomes and biologic characteristics. While HRFs have been used to train predictive and prognostic models, their reproducibility has been reported to be affected by variations in scan acquisition and reconstruction parameters, even within the same imaging vendor. In this work, we evaluated the reproducibility of HRFs across the arterial and portal venous phases of contrast-enhanced computed tomography images depicting hepatocellular carcinomas, as well as the potential of ComBat harmonization to correct for this difference. ComBat harmonization is a method based on Bayesian estimates that was developed for gene expression arrays, and has been investigated as a potential method for harmonizing HRFs. Our results show that the majority of HRFs are not reproducible between the arterial and portal venous imaging phases, yet a number of HRFs could be used interchangeably between those phases. Furthermore, ComBat harmonization increased the number of reproducible HRFs across both phases by 1%. Our results guide the pooling of arterial and venous phases from different patients in an effort to increase cohort size, as well as joint analysis of the phases.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4640
Author(s):  
Benjamín Durán-Vinet ◽  
Karla Araya-Castro ◽  
Juan Calderón ◽  
Luis Vergara ◽  
Helga Weber ◽  
...  

Colorectal cancer (CRC) is the third most prevalent cancer with the second highest mortality rate worldwide. CRC is a heterogenous disease with multiple risk factors associated, including obesity, smoking, and use of alcohol. Of total CRC cases, 60% are diagnosed in late stages, where survival can drop to about 10%. CRC screening programs are based primarily on colonoscopy, yet this approach is invasive and has low patient adherence. Therefore, there is a strong incentive for developing molecular-based methods that are minimally invasive and have higher patient adherence. Recent reports have highlighted the importance of extracellular vesicles (EVs), specifically exosomes, as intercellular communication vehicles with a broad cargo, including micro-RNAs (miRNAs). These have been syndicated as robust candidates for diagnosis, primarily for their known activities in cancer cells, including immunoevasion, tumor progression, and angiogenesis, whereas miRNAs are dysregulated by cancer cells and delivered by cancer-derived exosomes (CEx). Quantitative polymerase chain reaction (qPCR) has shown good results detecting specific cancer-derived exosome micro-RNAs (CEx-miRNAs) associated with CRC, but qPCR also has several challenges, including portability and sensitivity/specificity issues regarding experiment design and sample quality. CRISPR/Cas-based platforms have been presented as cost-effective, ultrasensitive, specific, and robust clinical detection tools in the presence of potential inhibitors and capable of delivering quantitative and qualitative real-time data for enhanced decision-making to healthcare teams. Thereby, CRISPR/Cas13-based technologies have become a potential strategy for early CRC diagnosis detecting CEx-miRNAs. Moreover, CRISPR/Cas13-based platforms’ ease of use, scalability, and portability also showcase them as a potential point-of-care (POC) technology for CRC early diagnosis. This study presents two potential CRISPR/Cas13-based methodologies with a proposed panel consisting of four CEx-miRNAs, including miR-126, miR-1290, miR-23a, and miR-940, to streamline novel applications which may deliver a potential early diagnosis and prognosis of CRC.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4656
Author(s):  
Christophe Van Berckelaer ◽  
Iris Vermeiren ◽  
Leonie Vercauteren ◽  
Charlotte Rypens ◽  
Gizem Oner ◽  
...  

Introduction: Inflammatory breast cancer (IBC) is a rare but aggressive form of breast cancer (BC) in which the (prognostic) role of stromal tumour-infiltrating lymphocytes (sTIL) and the peripheral circulating immune cells in patients with residual disease (RD) after neo-adjuvant chemotherapy (NACT) is not clearly established. Methodology: To describe the evolution of sTIL and some peripheral inflammation markers (Neutrophil-to-lymphocyte ratio, Platelet-to-lymphocyte ratio and Lymphocyte-to-monocyte ratio) after NACT in IBC, we retrospectively collected clinicopathological variables for 125 stage III IBC patients. sTILs were scored by three different researchers on an H&E slide of the mastectomy specimen. A cohort of subtype-matched non-IBC breast cancer patients (nIBC) treated with NACT was included for comparison. Results: There was no significant difference in the pre- and posttreatment sTIL scores between IBC and nIBC and in both groups the number of sTIL was significantly lower after NACT. However, the IBC phenotype did correlate with a stronger decrease of sTIL after NACT (OR: 0.25, 95% CI: 0.073–0.76, p = 0.018). The change in the peripheral immune markers was not significantly different between IBC and nIBC. After NACT, 75 patients had residual disease. In this group, a high number of sTIL before NACT (HR: 0.23, 95% CI: 0.05–1.02, p = 0.05) was prognostic for a longer OS, while a low number of sTIL after NACT (HR: 0.33, 95% CI: 0.11–0.98, p = 0.046) and a low residual cancer cellularity (HR: 0.20, 95% CI: 0.08–0.52, p < 0.001) was associated with a longer DFS. Conclusions: IBC is associated with a significantly stronger decrease of sTIL after NACT compared to nIBC. Furthermore, a high number of sTIL after NACT was associated with a worse prognosis in IBC.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4636
Author(s):  
Ralf Hass ◽  
Juliane von der Ohe ◽  
Thomas Dittmar

Fusion of cancer cells either with other cancer cells (homotypic fusion) in local vicinity of the tumor tissue or with other cell types (e.g., macrophages, cancer-associated fibroblasts (CAFs), mesenchymal stromal-/stem-like cells (MSC)) (heterotypic fusion) represents a rare event. Accordingly, the clinical relevance of cancer-cell fusion events appears questionable. However, enhanced tumor growth and/or development of certain metastases can originate from cancer-cell fusion. Formation of hybrid cells after cancer-cell fusion requires a post-hybrid selection process (PHSP) to cope with genomic instability of the parental nuclei and reorganize survival and metabolic functionality. The present review dissects mechanisms that contribute to a PHSP and resulting functional alterations of the cancer hybrids. Based upon new properties of cancer hybrid cells, the arising clinical consequences of the subsequent tumor heterogeneity after cancer-cell fusion represent a major therapeutic challenge. However, cellular partners during cancer-cell fusion such as MSC within the tumor microenvironment or MSC-derived exosomes may provide a suitable vehicle to specifically address and deliver anti-tumor cargo to cancer cells.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4652
Author(s):  
Kateryna Matiash ◽  
Clayton S. Lewis ◽  
Vladimir Y. Bogdanov

In human and mouse, alternative splicing of tissue factor’s primary transcript yields two mRNA species: one features all six TF exons and encodes full-length tissue factor (flTF), and the other lacks exon 5 and encodes alternatively spliced tissue factor (asTF). flTF, which is oftentimes referred to as “TF”, is an integral membrane glycoprotein due to the presence of an alpha-helical domain in its C-terminus, while asTF is soluble due to the frameshift resulting from the joining of exon 4 directly to exon 6. In this review, we focus on asTF—the more recently discovered isoform of TF that appears to significantly contribute to the pathobiology of several solid malignancies. There is currently a consensus in the field that asTF, while dispensable to normal hemostasis, can activate a subset of integrins on benign and malignant cells and promote outside-in signaling eliciting angiogenesis; cancer cell proliferation, migration, and invasion; and monocyte recruitment. We provide a general overview of the pioneering, as well as more recent, asTF research; discuss the current concepts of how asTF contributes to cancer progression; and open a conversation about the emerging utility of asTF as a biomarker and a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document