Diagnosis of operational failures and on-demand failures in nuclear power plants: An approach based on dynamic Bayesian networks

2020 ◽  
Vol 138 ◽  
pp. 107181 ◽  
Author(s):  
Yunfei Zhao ◽  
Jiejuan Tong ◽  
Liguo Zhang ◽  
Guohua Wu
2020 ◽  
Vol 128 ◽  
pp. 103479
Author(s):  
Pavan Kumar Vaddi ◽  
Michael C. Pietrykowski ◽  
Diptendu Kar ◽  
Xiaoxu Diao ◽  
Yunfei Zhao ◽  
...  

2020 ◽  
Author(s):  
Varenya Kumar D. Mohan ◽  
Philip Vardon ◽  
James Daniell ◽  
Pierre Gehl ◽  
Andreas Schafer ◽  
...  

<p>Low probability events occurring in sequence, within a limited operational time (damage and recovery window between events), are a key consideration in multi-hazard safety assessments of nuclear power plants (NPPs). Cascading effects from hazards and associated event sequences could potentially have a significant impact on risk estimates. The Bayesian network can act as a framework to consider aforementioned statistical dependencies between various hazards in multi-risk analyses of nuclear power plants.</p><p>Within the EU project NARSIS (New Approach to Reactor Safety Improvements), a Bayesian network-based risk assessment framework was developed to perform multi-hazard risk assessment of NPPs.</p><p>The Bayesian network method was applied for an external-event related station blackout (SBO) scenario at a NPP. Earthquake, flooding, and tornado were among the hazards considered at a decommissioned NPP site location in Europe. Both hazard dependency in time as well as a cascading scenario was also considered. The hazards, their interactions and the fragilities of selected systems, structures and components within the nuclear power plant were represented in the network and their probability distributions were obtained based on the multi-hazard and fragility approaches adopted within the NARSIS project.</p><p>Sensitivity analyses in the network were used to identify key hazards and interactions. Most influential hazard combinations and ranges of intensity measures were identified through diagnostic inference in the network. Discretisation of continuous variables (hazard curves in this case) is a key aspect of performing inference in Bayesian networks. The effect of various levels of discretisation of hazard probability distributions was assessed, to identify suitable discretisations of hazard data.</p><p>This application demonstrates the use and advantages of the Bayesian network methodology, developed in the NARSIS project, for probabilistic safety assessments of NPPs.</p>


Author(s):  
Marjorie B. Bauman ◽  
Richard F. Pain ◽  
Harold P. Van Cott ◽  
Margery K. Davidson

2010 ◽  
pp. 50-56 ◽  
Author(s):  
Pablo T. León ◽  
Loreto Cuesta ◽  
Eduardo Serra ◽  
Luis Yagüe

Author(s):  
R. Z. Aminov ◽  
A. N. Bayramov ◽  
M. V. Garievskii

The paper gives the analysis of the problem of the primary current frequency regulation in the power system, as well as the basic requirements for NPP power units under the conditions of involvement in the primary regulation. According to these requirements, the operation of NPPs is associated with unloading and a corresponding decrease in efficiency. In this regard, the combination of nuclear power plants with a hydrogen complex is shown to eliminate the inefficient discharge mode which allows the steam turbine equipment and equipment of the reactor facility to operate in the basic mode at the nominal power level. In addition, conditions are created for the generation and accumulation of hydrogen and oxygen during the day, as well as additionally during the nighttime failure of the electrical load which allows them to be used to generate peak power.  The purpose of the article is to assess the systemic economic effect as a result of the participation of nuclear power plants in combination with the hydrogen complex in the primary control of the current frequency in the power sys-tem, taking into account the resource costs of the main equipment. In this regard, the paper gives the justification of cyclic loading of the main equipment of the hydrogen complex: metal storage tanks of hydrogen and oxygen, compressor units, hydrogen-oxygen combustion chamber of vapor-hydrogen overheating of the working fluid in the steam turbine cycle of a nuclear power plant. The methodological foundations for evaluating the working life of equipment under cyclic loading with the participation in the primary frequency control by the criterion of the growth rate of a fatigue crack are described. For the equipment of the hydrogen complex, the highest intensity of loading is shown to occur in the hydrogen-oxygen combustion chamber due to high thermal stresses.  The system economic effect is estimated and the effect of wear of the main equipment under cyclic loading is shown. Under the conditions of combining NPP power units with a hydrogen complex, the efficiency of primary reg-ulation is shown to depend significantly on: the cost of equipment subjected to cyclic loading; frequency and intensity of cyclic loading; the ratio of the tariff for peak electricity, and the cost of electricity of nuclear power plants.  Based on the developed methodology for assessing the effectiveness of the participation of nuclear power plants with a hydrogen complex in the primary frequency control, taking into account the damage to the equipment, the use of the hydrogen complex is shown to provide a tangible economic effect compared with the option of unloading nuclear power plants with direct participation in frequency control.


Sign in / Sign up

Export Citation Format

Share Document