life extension
Recently Published Documents


TOTAL DOCUMENTS

2287
(FIVE YEARS 621)

H-INDEX

65
(FIVE YEARS 11)

2022 ◽  
Vol 46 ◽  
pp. 103897
Author(s):  
Eshan Karunarathne ◽  
Anjana Wijesekera ◽  
Lilantha Samaranayake ◽  
Prabath Binduhewa ◽  
Janaka Ekanayake

Author(s):  
Ahmadreza Farrokhnia ◽  
Andrey P. Jivkov ◽  
Graham Hall ◽  
Paul Mummery

Abstract The UK Advanced Gas-Cooled reactors (AGRs) have cores made of graphite bricks with dual functions: as structural elements of the core, providing space for and separating fuel and control rods; and as moderator of the nuclear reaction. Nuclear graphite is a quasi-brittle material, where the dominant mechanism for failure is cracking. While cracking of isolated bricks is expected due to operation-induced changes in graphite microstructure and stress fields, these could be tolerated as far as the overall structural function of the core is maintained. Assessment of the whole core behaviour has been previously done with whole scale models where bricks have been considered as rigid body elements connected by elastic-brittle springs. This approach does not allow for the realistic assessment of the stresses in the bricks and associated brick cracking. Reported here are results from an ongoing project, which addresses this shortcoming. The proposed model uses deformable bricks with appropriate interactions, allowing for physically realistic whole core analysis. The results are focused on the damage that a graphite moderated reactor develops during a life cycle, how this affects the behaviour of the whole core, and how changes in bricks' behaviour impacts the core integrity. The proposed methodology is a major step towards high-fidelity assessment of AGRs' fitness for service, required for supporting continuous safe operation and life-extension decisions.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Seul-Gi Jeong ◽  
Ho Myeong Kim ◽  
Junheon Kim ◽  
Jae Su Kim ◽  
Hae Woong Park

AbstractMetarhizium anisopliae is a promising alternative to chemical pesticides against pine wilt disease caused by Bursaphelenchus xylophilus. Herein, we investigated the efficacy of modified atmosphere packaging (MAP) to prolong the shelf-life of the M. anisopliae conidia. The effects of various conditions on its stability were also examined. M. anisopliae-inoculated millet grains were treated in a MAP system with different packaging materials (polypropylene, PP; polyethylene terephthalate, PET; ethylene vinyl alcohol, EVOH), gas compositions (high CO2 atmosphere, ≈ 90%; high O2 atmosphere, > 95%; high N2 atmosphere, > 95%; 30% CO2 + 70% N2; 50% CO2 + 50% N2; 70% CO2 + 30% N2), and storage temperatures (4 and 25 °C). Results revealed EVOH film as the best for the preservation of gases at all concentrations for 28 days. MAP treatment in the high-barrier EVOH film under an atmosphere of 30% CO2 + 70% N2 achieved 80.5% viability of dried conidia (7.4% moisture content), with 44.2–64.9% viability recorded with the other treatments. Cold storage for technical concentrates formulation promoted extension of shelf-life of MAP-treated conidia. These results imply that MAP under optimized conditions could enhance the shelf-life of fungus-based biopesticides in fungus-colonized substrates formulations.


2022 ◽  
Author(s):  
Erin Kuang ◽  
Robert W. Cross ◽  
Maria McCavitt-Malvido ◽  
Dafna M Abelson ◽  
Viktoriya Borisevich ◽  
...  

Intravenous administration (IV) of antiviral monoclonal antibodies (mAbs) is challenging due to limited resources for performing infusions during an ongoing epidemic. An ebolavirus therapeutic administered via intramuscular (IM) injection would reduce these burdens and allow rapid treatment of exposed individuals during an outbreak. Here, we demonstrate how MBP134, a two mAb pan-ebolavirus cocktail, reverses the course of Sudan ebolavirus (SUDV/Gulu) disease with a single IV or IM dose in non-human primates (NHPs) as far as five days post-exposure. Furthermore, we investigated the utility of adding half-life extension mutations to the MBP134 mAbs, ultimately creating a half-life extended cocktail designated MBP431. MBP431 demonstrated an extended serum half-life in vivo and offered complete or significant protection with a single IM dose delivered as a post-exposure prophylactic (PEP) or therapeutic in NHPs challenged with EBOV. These results support the use of MBP431 as a rapidly deployable IM medical countermeasure against every known ebolavirus.


Food systems ◽  
2022 ◽  
Vol 4 (4) ◽  
pp. 255-258
Author(s):  
A. S. Ammar ◽  
W. A. Bazaraa

In the past two decades, nano-science is widely used in different applications and the increased interest in the utilization of nanoparticles in food processing is clear. Such applications include processing, packaging, development of functional food, safety, foodborne pathogens detection, and shelf-life extension. In this article, the essential facts and the latest uses of nano-science in fruit and vegetable juices were described. The green synthesis of nanoparticles with antioxidant, antibacterial and antifungal characteristics is of great interest in food preservation. These nanoparticles such as metals, oxidized metals and its bioactivity in juice were reviewed. The current procedures to prepare nanojuice including nanofiltration and the most recent nanomilling were presented. Beside the preparation, special emphasis has also been given to the chemical as well as the biological (microbial and enzymatic) quality of the produced nanojuice. The role of nanotechnology in the development of the smart and the active food packaging systems for the improvement of food shelf- life and quality was also discussed. Since the physical and chemical characteristics of nanoparticles are completely different from those of macro-size. Therefore, special and urgent attention by responsible authorities should be given and effective policies should be applied for food products to ensure product quality, customer health and safety as well as the environmental protection.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Iñaki Permanyer ◽  
Jeroen Spijker ◽  
Amand Blanes

Abstract Background Current measures to monitor population health include indicators of (i) average length-of-life (life expectancy), (ii) average length-of-life spent in good health (health expectancy), and (iii) variability in length-of-life (lifespan inequality). What is lacking is an indicator measuring the extent to which healthy lifespans are unequally distributed across individuals (the so-called ‘healthy lifespan inequality’ indicators). Methods We combine information on age-specific survival with the prevalence of functional limitation or disability in Spain (2014–2017) by sex and level of education to estimate age-at-disability onset distributions. Age-, sex- and education-specific prevalence rates of adult individuals’ daily activities limitations were based on the GALI index derived from Spanish National Health Surveys held in 2014 and 2017. We measured inequality using the Gini index. Results In contemporary Spain, education differences in health expectancy are substantial and greatly exceed differences in life expectancy. The female advantage in life expectancy disappears when considering health expectancy indicators, both overall and across education groups. The highly educated exhibit lower levels of lifespan inequality, and lifespan inequality is systematically higher among men. Our new healthy lifespan inequality indicators suggest that the variability in the ages at which physical daily activity limitations start are substantially larger than the variability in the ages at which individuals die. Healthy lifespan inequality tends to decrease with increasing educational attainment, both for women and for men. The variability in ages at which physical limitations start is slightly higher for women than for men. Conclusions The suggested indicators uncover new layers of health inequality that are not traceable with currently existing approaches. Low-educated individuals tend to not only die earlier and spend a shorter portion of their lives in good health than their highly educated counterparts, but also face greater variation in the eventual time of death and in the age at which they cease enjoying good health—a multiple burden of inequality that should be taken into consideration when evaluating the performance of public health systems and in the elaboration of realistic working-life extension plans and the design of equitable pension reforms.


2022 ◽  
Author(s):  
Han-jun Wu ◽  
Liu-er Liu ◽  
Wen-ning Wu ◽  
Jin-qiong Zhan ◽  
Yi-heng Li ◽  
...  

Abstract Klotho is a life extension factor that has an ability to regulate the function of GluN2B-containing N-methyl-D-aspartate receptors (NMDARs), whose dysfunction in the nucleus accumbens (NAc) underlies critical aspects of the pathophysiology of major depression. Here we study the functional relevance of klotho in the pathogenesis of depression. A chronic social defeat stress paradigm, where mice are either categorized as susceptible or unsusceptible group based on their performance in a social interaction test, was used in this study. We found that the expression of klotho was largely decreased in the NAc of susceptible mice when compared to control or unsusceptible group. Genetic knockdown of klotho in the NAc induced depressive-like behaviors in naive mice, while overexpression of klotho produced an antidepressive effect in normal mice and ameliorated the depressive-like behaviors in susceptible mice. Molecularly, knockdown of klotho in the NAc resulted in selective decreases of total and synaptic GluN2B expression that were identical to susceptible mice. Elevation of klotho in the NAc reversed the reductions of GluN2B expressions, as well as altered synaptic transmission and spine density in the NAc of susceptible mice. Furthermore, blockade of GluN2B with a specific antagonist abolished the beneficial effects of klotho elevation in susceptible mice. Collectively, we demonstrated that klotho in the NAc modulates depressive-like behaviors by regulating the function of GluN2B-containing NMDARs. These results reveal a novel role for klotho in the pathogenesis of depression, opening new insights into the molecular basis of major depression.


Sign in / Sign up

Export Citation Format

Share Document