Comparison of occupational exposure according to dismantling strategy of Kori nuclear power plant unit #1 bio-shield

2021 ◽  
Vol 157 ◽  
pp. 108227
Author(s):  
ChoongWie Lee ◽  
Hee Reyoung Kim ◽  
Seung Jun Lee
Author(s):  
Bjorn Brickstad ◽  
Adam Letzter ◽  
Arturas Klimasauskas ◽  
Robertas Alzbutas ◽  
Linas Nedzinskas ◽  
...  

A project with the acronym IRBIS (Ignalina Risk Based Inspection pilot Study) has been performed with the objective to perform a quantitative risk analysis of a total of 1240 stainless steel welds in Ignalina Nuclear Power Plant, unit 2 (INPP-2). The damage mechanism is IGSCC and the failure probabilities are quantified by using probabilistic fracture mechanics. The conditional core damage probabilities are taken from the plant PSA.


Author(s):  
Atsuo Takahashi ◽  
Marco Pellegrini ◽  
Hideo Mizouchi ◽  
Hiroaki Suzuki ◽  
Masanori Naitoh

The transient process of the accident at the Fukushima Daiichi Nuclear Power Plant Unit 2 was analyzed by the severe accident analysis code, SAMPSON. One of the characteristic phenomena in Unit 2 is that the reactor core isolation cooling system (RCIC) worked for an unexpectedly long time (about 70 h) without batteries and consequently core damage was delayed when compared to Units 1 and 3. The mechanism of how the RCIC worked such a long time is thought to be due to balance between injected water from the RCIC pump and the supplied mixture of steam and water sent to the RCIC turbine. To confirm the RCIC working conditions and reproduce the measured plant properties, such as pressure and water level in the pressure vessel, we introduced a two-phase turbine driven pump model into SAMPSON. In the model, mass flow rate of water injected by the RCIC was calculated through turbine efficiency degradation the originated from the mixture of steam and water flowing to the RCIC turbine. To reproduce the drywell pressure, we assumed that the torus room was flooded by the tsunami and heat was removed from the suppression chamber to the sea water. Although uncertainties, mainly regarding behavior of debris, still remain because of unknown boundary conditions, such as alternative water injection by fire trucks, simulation results by SAMPSON agreed well with the measured values for several days after the scram.


2001 ◽  
Vol 136 (1) ◽  
pp. 76-88 ◽  
Author(s):  
Boris K. Bylkin ◽  
Galina B. Davydova ◽  
Yuri A. Zverkov ◽  
Alexander V. Krayushkin ◽  
Yuri A. Neretin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document