moving particle
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 103)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Takahito Iida ◽  
Yudai Yokoyama

AbstractThe sensitivity of moving particle semi-implicit (MPS) simulations to numerical parameters is investigated in this study. Although the verification and validation (V&V) are important to ensure accurate numerical results, the MPS has poor performance in convergences with a time step size. Therefore, users of the MPS need to tune numerical parameters to fit results into benchmarks. However, such tuning parameters are not always valid for other simulations. We propose a practical numerical condition for the MPS simulation of a two-dimensional wedge slamming problem (i.e., an MPS-slamming condition). The MPS-slamming condition is represented by an MPS-slamming number, which provides the optimum time step size once the MPS-slamming number, slamming velocity, deadrise angle of the wedge, and particle size are decided. The simulation study shows that the MPS results can be characterized by the proposed MPS-slamming condition, and the use of the same MPS-slamming number provides a similar flow.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Rifqa Fikriya Rahasri ◽  
Asril Pramutadi Andi Mustari ◽  
Anni Nuril Hidayati

The very complex structure of nuclear reactors is one aspect of the cause of severe accidents in nuclear reactors. To prevent serious accidents, analysis is needed on the reactor design before the reactor is built. Reactor accident analysis can be done using the Moving Particle Semi-Implicit method. The Moving Particle Semi-Implicit method is excellent in simulating the movement of liquid fuel in a reactor because it can analyze the free surface flow of an incompressible liquid without using a mesh grid. Simulations were carried out using three types of fluids with different viscosities and densities such as water, oil, and wax. The simulation results show that the water takes the fastest time to drain all the particles and the oil takes the longest time. From the simulation results, it can be determined that the kinematic viscosity of a liquid affects its flow velocity.


2021 ◽  
Vol 117 ◽  
pp. 102963
Author(s):  
Xiao Wen ◽  
Weiwen Zhao ◽  
Decheng Wan

Sign in / Sign up

Export Citation Format

Share Document