core damage
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 35)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 165 ◽  
pp. 108662
Author(s):  
Alireza Najafi ◽  
Athena Shahsavand ◽  
Seyed Ali Hosseini ◽  
Amir Saeed Shirani ◽  
Faramarz Yousefpour ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jianqiang Lu ◽  
Meilong Fu ◽  
Liu Xu ◽  
Qian Huang ◽  
Yan Zheng

Nowadays, there are a wide variety of thickeners developed for dry CO2 fracturing worldwide, but numerous problems remain during in situ testing. To address problems in CO2 fracturing fluid operation (high frictional drag, low viscosity, low proppant-carrying capacity, narrow reservoir fractures, etc.), the authors have synthesized the novel hydrophobic long-chain ester thickener, studied viscosity, frictional drag, and proppant-carrying capacity of CO2 fracturing fluid and core damage by CO2 fracturing fluid by varying the temperature, pressure, and level of injection of the novel thickener and explored the thickening mechanism for this thickener in CO2. Based on the study results, as the temperature, pressure, and amount of injected thickener increased, fracturing fluid viscosity increased steadily. In the case of shearing for 125 min under conditions of 170 S−1, 40°C, and 20 MPa, when the thickener level increased from 1% to 2%, fracturing fluid viscosity increased and then decreased, varying within 50–150 mPa·s, and the viscosity-enhancing effect was evident; under conditions of 20°C and 12 MPa, as the flow rate increased, drag reduction efficiency reached 78.3% and the minimal proppant settling speed was 0.09 m/s; under conditions of 40°C and 20 MPa, drag reduction efficiency reached 77.4% and the proppant settling speed was 0.08 m/s; with the increases in temperature, pressure, and injection amount, core damage rates of the thickener varied within 1.77%–2.88%, indicating that basically no damage occurred. This study is of significant importance to the development of CO2 viscosity enhancers and CO2 fracturing operation.


Author(s):  
JinHo Song ◽  
Dong-Gun Son ◽  
JunHo Bae ◽  
Sung Won Bae ◽  
KwangSoon Ha ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
F. Ameyaw ◽  
R. Abrefah ◽  
S. Yamoah ◽  
S. Birikorang

Fault trees (FT) and event trees (ET) are widely used in industry to model and evaluate the reliability of safety systems. This work seeks to analyze and estimate the core damage frequency (CDF) due to flow blockage (FB) and loss of coolant accident (LOCA) due to large rupture of primary circuit pipe with respect to a specific 10 MW Water-Water Research Reactor in Ghana using the FT and ET technique. Using FT, the following reactor safety systems: reactor protection system, primary heat removal system, isolation of the reactor pool, emergency core cooling system (ECCS), natural circulation heat removal, and isolation of the containment were evaluated for their dependability. The probabilistic safety assessment (PSA) Level 1 was conducted using a commercial computational tool, system analysis program for practical coherent reliability assessment (SAPHIRE) 7.0. The frequency of an accident resulting in severe core damage for the internal initiating event was estimated to be 2.51e − 4/yr for the large LOCA as well as 1.45e − 4/yr for FB, culminating in a total core damage frequency of 3.96e − 4/yr. The estimated values for the frequencies of core damage were within the expected margins of 1.0e − 5/yr to 1.0e − 4/yr and of identical sequence of the extent as found for similar reactors.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2955
Author(s):  
Geon Gyu Choi ◽  
Woo Sik Jung ◽  
Seong Kyu Park

It is popular that correlated seismic failures spread over the fault tree of a seismic probabilistic safety assessment (PSA) for a nuclear power plant (NPP). To avoid the calculational difficulty of core damage frequency (CDF), the fault tree has been simplified by replacing correlated seismic failures with one typical seismic failure by assuming a full correlation among the correlated seismic failures. Then, the approximate seismic CDF of a seismic single-unit PSA (SUPSA) has been calculated for decades with this simplified SUPSA fault tree. Furthermore, current seismic multi-unit PSAs (MUPSAs) have been performed with imperfect seismic MUPSA models that were generated by combining such imperfect seismic SUPSA fault trees. The authors of this study recently developed a method that can calculate an accurate seismic CDF by converting correlated seismic failures into seismic common cause failures (CCFs). In this study, accurate and imperfect MUPSA models were created and their seismic CDFs were compared. The results of this study show that the seismic CDFs in SUPSA and MUPSA are drastically distorted and safety margins are accordingly distorted when the full correlation assumption is employed. Thus, this study shows that very careful attention should be paid to calculating and interpreting seismic CDFs for the single-unit and multi-unit NPP regulations.


2021 ◽  
Author(s):  
Martin Alan Wortman

Core Damage Frequency (CDF) is a risk metric often employed by nuclear regulatory bodies worldwide. Numerical values for this metric are required by U.S. regulators, prior to reactor licensing, and reported values can trigger regulatory inspections. CDF is reported as a constant, sometimes accompanied by a confidence interval. It is well understood that CDF characterizes the arrival rate of a stochastic point process modeling core damage events. However, consequences of the assumptions imposed on this stochastic process as a computational necessity are often overlooked. Herein, we revisit CDF in the context of modern point process theory. We will argue that the assumptions required to yield a constant CDF are typically unrealistic. We will further argue that treating CDF as an informative approximation is suspect, because of the inherent difficulties in quantifying its quality as an approximation.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2150
Author(s):  
Woo Sik Jung

Seismic probabilistic safety assessment (PSA) models for nuclear power plants (NPPs) have many non-rare events whose failure probabilities are proportional to the seismic ground acceleration. It has been widely accepted that minimal cut sets (MCSs) that are calculated from the seismic PSA fault tree should be converted into exact solutions, such as binary decision diagrams (BDDs), and that the accurate seismic core damage frequency (CDF) should be calculated from the exact solutions. If the seismic CDF is calculated directly from seismic MCSs, it is drastically overestimated. Seismic single-unit PSA (SUPSA) models have random failures of alternating operation systems that are combined with seismic failures of components and structures. Similarly, seismic multi-unit PSA (MUPSA) models have failures of NPPs that undergo alternating operations between full power and low power and shutdown (LPSD). Their failures for alternating operations are modeled using fraction or partitioning events in seismic SUPSA and MUPSA fault trees. Since partitioning events for one system are mutually exclusive, their combinations should be excluded in exact solutions. However, it is difficult to eliminate the combinations of mutually exclusive events without modifying PSA tools for generating MCSs from a fault tree and converting MCSs into exact solutions. If the combinations of mutually exclusive events are not deleted, seismic CDF is underestimated. To avoid CDF underestimation in seismic SUPSAs and MUPSAs, this paper introduces a process of converting partitioning events into conditional events, and conditional events are then inserted explicitly inside a fault tree. With this conversion, accurate CDF can be calculated without modifying PSA tools. That is, this process does not require any other special operations or tools. It is strongly recommended that the method in this paper be employed for avoiding CDF underestimation in seismic SUPSAs and MUPSAs.


2021 ◽  
Author(s):  
Qichao Lv ◽  
Tongke Zhou ◽  
Yingting Luan ◽  
Zhaoxia Dong

Abstract Foam fracturing is an effective method for the development of unconventional reservoirs. However, due to lamellar film, high pressure differences within foam films, and the strong diffusivity of the internal phase, foam is prone to suffering from unstable phenomena such as rupture, drainage, disproportionation, etc., thus leading to uncontrollable foam flow behavior in the tube and formation. In this work, cellulose nanofibrils (CNFs) were used to enhance foam fracturing fluid. The target is not only to obtain a stable foam system, but also to control its rheology, proppant-carrying and leak-off behavior. The stability of the N2 foam fracturing fluid with CNFs was firstly explored via static tests by measuring its foam volume and liquid drainage. Then, the viscosity of foam fracturing fluids with different foam quality was measured using a tube viscometer under conditions of use, to evaluate the rheology of foam with CNFs. Subsequently, the proppant-carrying capacity was evaluated by observing suspension state of proppants in foam over time. The microscopic images of the foam with proppants were collected to analyze the interaction between bubbles and proppant. Finally, the dynamic filtration behavior and core damage of foam with CNFs were investigated by using a dynamic filtration apparatus. The results of the static tests showed that the stability of foam was significantly enhanced by the addition of CNFs, and the liquid drainage and gas diffusion could be effectively inhibited. Upon foam evolution, bare surfactant foam formed a polyhedral structure rapidly, while the CNFs enhanced foam maintained spherical and dense for a long time. The viscosity of foams with and without cellulose nanofibrils showed a shear thinning behavior. With the addition of CNFs, the viscosity of foam was improved by 3 - 6 times compared with bare surfactant foam and its value was increased with foam quality changing from 60% to 80%. The results of proppant-carrying tests indicated that the proppants suspension in foam was improved obviously as the cellulose nanofibrils were added. For CNFs-stabilized foam, the aqueous film of bubbles became thicker and the mechanical strength of foam structure was improved, thus enhancing the proppant suspension in the foams. Moreover, the filtration control performance of CNFs foam was also improved compared with bare surfactant foam. The filtration coefficient of CNFs foam fracturing fluid decreased with increasing CNFs concentration at a filtration pressure difference of 3 MPa, and core damage was maintained at a relatively low level. Additionally, the filtration coefficient of CNFs-stabilized foam and its core damage could be reduced with the increase of foam quality from 60% to 80%. The stability, rheology, proppant-carrying and dynamic filtration control of foam fracturing fluid enhanced by cellulose nanofibrils were explored in this work. The results show that the addition of CNFs effectively improves the stability of the foam, thus enabling the rheology, proppant-carrying and the dynamic filtration to be well controlled, which provides a high-performance and eco-friendly foam fracturing fluid.


Sign in / Sign up

Export Citation Format

Share Document