Nodal integral method for 3D time-dependent anisotropic convection-diffusion equation

2021 ◽  
Vol 163 ◽  
pp. 108550
Author(s):  
Ibrahim Jarrah ◽  
Rizwan-uddin
Author(s):  
Allen J. Toreja ◽  
Rizwan-Uddin

An existing implementation of the nodal integral method for the time-dependent convection-diffusion equation is modified to incorporate various PETSc (Portable, Extensible Toolkit for Scientific Computation) solver and preconditioner routines. In the modified implementation, the default iterative Gauss-Seidel solver is replaced with one of the following PETSc iterative linear solver routines: Generalized Minimal Residuals, Stabilized Biconjugate Gradients, or Transpose-Free Quasi-Minimal Residuals. For each solver, a Jacobi or a Successive Over-Relaxation preconditioner is used. Two sample problems, one with a low Peclet number and one with a high Peclet number, are solved using the new implementation. In all the cases tested, the new implementation with the PETSc solver routines outperforms the original Gauss-Seidel implementation. Moreover, the PETSc Stabilized Biconjugate Gradients routine performs the best on the two sample problems leading to CPU times that are less than half the CPU times of the original implementation.


Author(s):  
Sundar Namala ◽  
Rizwan Uddin

Abstract Nodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). The standard application of NIM is restricted to domains that have boundaries parallel to one of the coordinate axes/palnes (in 2D/3D). The hybrid nodal-integral/finite-element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. Resulting hybrid numerical scheme is implemented in a parallel framework in Fortran and solved using PETSc. The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second order accurate in both space and time. The order of approximations used for the development of the scheme are also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.


Author(s):  
Sundar Namala ◽  
Rizwan Uddin

Abstract Nodal integral methods (NIM) are a class of efficient coarse mesh method that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE), and these ODEs or their approximations are analytically solved. Since this method depends on transverse averaging, the standard application of this approach gets restricted to domains that have boundaries that are parallel to one of the coordinate axes (2D) or coordinate planes (3D). The hybrid nodal-integral/finite-element method (NI-FEM) has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM and the rest of the domain can be solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the regions solved by the NIM and the FEM. Since the discrete variables in the two numerical approaches are different, this requires special treatment of the discrete quantities on the interface between the two different types of discretized elements. We here report the development of hybrid NI-FEM in a parallel framework in Fortran using PETSc for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. Numerical solutions are compared with exact solutions, and the scheme is shown to be second order accurate in both space and time. The order of approximations used for the development of the scheme are also shown to be second order. The hybrid method is efficient compared to standalone conventional numerical schemes like FEM.


Sign in / Sign up

Export Citation Format

Share Document