Finite Difference Schemes for Three-dimensional Time-dependent Convection-Diffusion Equation Using Full Global Discretization

1997 ◽  
Vol 130 (1) ◽  
pp. 109-122 ◽  
Author(s):  
H.Y. Xu ◽  
M.D. Matovic ◽  
A. Pollard
2017 ◽  
Vol 150 ◽  
pp. 95-114 ◽  
Author(s):  
V.K. Suman ◽  
Tapan K. Sengupta ◽  
C. Jyothi Durga Prasad ◽  
K. Surya Mohan ◽  
Deepanshu Sanwalia

2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Yaw Kyei ◽  
John Paul Roop ◽  
Guoqing Tang

We derive a family of sixth-order compact finite-difference schemes for the three-dimensional Poisson's equation. As opposed to other research regarding higher-order compact difference schemes, our approach includes consideration of the discretization of the source function on a compact finite-difference stencil. The schemes derived approximate the solution to Poisson's equation on a compact stencil, and thus the schemes can be easily implemented and resulting linear systems are solved in a high-performance computing environment. The resulting discretization is a one-parameter family of finite-difference schemes which may be further optimized for accuracy and stability. Computational experiments are implemented which illustrate the theoretically demonstrated truncation errors.


Sign in / Sign up

Export Citation Format

Share Document