Fractional corresponding operator in quantum mechanics and applications: A uniform fractional Schrödinger equation in form and fractional quantization methods

2014 ◽  
Vol 350 ◽  
pp. 124-136 ◽  
Author(s):  
Xiao Zhang ◽  
Chaozhen Wei ◽  
Yingming Liu ◽  
Maokang Luo
Author(s):  
Chandra Halim ◽  
M. Farchani Rosyid

The implementation of Lévy path integral generated by Lévy stochastic process on fractional Schrödinger equation has been investigated in the framework of fractional quantum mechanics. As the comparison, the implementation of Feynmann path integral generated by Wiener stochastic process on Schrödinger equation also has been investigated in the framework of standard quantum mechanics. There are two stochastic processes. There are Lévy stochastic and Wiener stochastic process. Both of them are able to produce fractal. In fractal’s concept, there is a value known as fractal dimension. The implementation of fractal dimension is the diffusion equation obtained by using Fokker Planck equation. In this paper, Lévy and Wiener fractal dimension have been obtained. There are  for Lévy and 2 for Wiener/Brown fractal dimension. Fractional quantum mechanics is generalization of standard quantum mechanics. A fractional quantum mechanics state is represented by wave function from fractional Schrödinger equation. Fractional Schrödinger equation is obtained by using kernel of Lévy path integral generated by Lévy stochastic process. Otherwise, standard quantum mechanics state is represented by wave function from standard Schrödinger equation. Standard Schrödinger equation is obtained by using kernel of Feynmann path integral generated by Wiener/Brown stochastic process.  Both Lévy and Feynmann Kernel have been investigated and the outputs are the Fourier Integral momentum phase of those kernels. We find that the forms of those kernels have similiraty. Therefore, we obtain Schrödinger equation from Lévy and Feynmann Kernel and also the comparison of Lévy energy in fractional quantum mechanics and particle energy in standard quantum mechanics.


2018 ◽  
Vol 18 (1) ◽  
pp. 77-94
Author(s):  
Dan Li ◽  
Jiwei Zhang ◽  
Zhimin Zhang

AbstractA fast and accurate numerical scheme is presented for the computation of the time fractional Schrödinger equation on an unbounded domain. The main idea consists of two parts. First, we use artificial boundary methods to equivalently reformulate the unbounded problem into an initial-boundary value (IBV) problem. Second, we present two numerical schemes for the IBV problem: a direct scheme and a fast scheme. The direct scheme stands for the direct discretization of the Caputo fractional derivative by using the L1-formula. The fast scheme means that the sum-of-exponentials approximation is used to speed up the evaluation of the Caputo fractional derivative. The resulting fast algorithm significantly reduces the storage requirement and the overall computational cost compared to the direct scheme. Furthermore, the corresponding stability analysis and error estimates of two schemes are established, and numerical examples are given to verify the performance of our approach.


Sign in / Sign up

Export Citation Format

Share Document