scholarly journals Kajian Integral Lintasan Levy dalam Mekanika Kuantum Fraksional untuk Membentuk Persamaan Schrodinger Fraksional

Author(s):  
Chandra Halim ◽  
M. Farchani Rosyid

The implementation of Lévy path integral generated by Lévy stochastic process on fractional Schrödinger equation has been investigated in the framework of fractional quantum mechanics. As the comparison, the implementation of Feynmann path integral generated by Wiener stochastic process on Schrödinger equation also has been investigated in the framework of standard quantum mechanics. There are two stochastic processes. There are Lévy stochastic and Wiener stochastic process. Both of them are able to produce fractal. In fractal’s concept, there is a value known as fractal dimension. The implementation of fractal dimension is the diffusion equation obtained by using Fokker Planck equation. In this paper, Lévy and Wiener fractal dimension have been obtained. There are  for Lévy and 2 for Wiener/Brown fractal dimension. Fractional quantum mechanics is generalization of standard quantum mechanics. A fractional quantum mechanics state is represented by wave function from fractional Schrödinger equation. Fractional Schrödinger equation is obtained by using kernel of Lévy path integral generated by Lévy stochastic process. Otherwise, standard quantum mechanics state is represented by wave function from standard Schrödinger equation. Standard Schrödinger equation is obtained by using kernel of Feynmann path integral generated by Wiener/Brown stochastic process.  Both Lévy and Feynmann Kernel have been investigated and the outputs are the Fourier Integral momentum phase of those kernels. We find that the forms of those kernels have similiraty. Therefore, we obtain Schrödinger equation from Lévy and Feynmann Kernel and also the comparison of Lévy energy in fractional quantum mechanics and particle energy in standard quantum mechanics.

2015 ◽  
Vol 36 ◽  
pp. 1560015 ◽  
Author(s):  
M. M. I. Nayga ◽  
J. P. H. Esguerra

Using a path integral approach, we consider a fractional Schrödinger equation with delta-perturbed infinite square well. The Lévy path integral, which is generalized from the Feynman path intergal for the propagator, is expanded into a perturbation series. From this, the energy-dependent Green's function is obtained.


2021 ◽  
pp. 2130005
Author(s):  
Irina Petreska ◽  
Trifce Sandev ◽  
Ervin Kaminski Lenzi

This paper presents an overview over several examples, where the comb-like geometric constraints lead to emergence of the time-fractional Schrödinger equation. Motion of a quantum object on a comb structure is modeled by a suitable modification of the kinetic energy operator, obtained by insertion of the Dirac delta function in the Laplacian. First, we consider motion of a free particle on two- and three-dimensional comb structures, and then we extend the study to the interacting cases. A general form of a nonlocal term, which describes the interactions of the particle with the medium, is included in the Hamiltonian, and later on, the cases of constant and Dirac delta potentials are analyzed. At the end, we discuss the case of non-integer dimensions, considering separately the case of fractal dimension between one and two, and the case of fractal dimension between two and three. All these examples show that even though we are starting with the standard time-dependent Schrödinger equation on a comb, the time-fractional equation for the Green’s functions appears, due to these specific geometric constraints.


Sign in / Sign up

Export Citation Format

Share Document