Study on the influence of resilient wheels on vibration and acoustic radiation characteristics of suburban railway concrete box girder bridges

2022 ◽  
Vol 187 ◽  
pp. 108529
Author(s):  
Yuanpeng He ◽  
Xinghuan Wang ◽  
Jian Han ◽  
Xinbiao Xiao ◽  
Xiaozhen Sheng
Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 1097-1108
Author(s):  
Zhi-Qi He ◽  
Yonghui Li ◽  
Tian Xu ◽  
Zhao Liu ◽  
Zhongguo John Ma

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hanzheng Xu ◽  
Xiaofeng Yan

Concrete box-girder bridges are widely used in China. During several routine inspections of two-year-old highway bridges of this type in the China Central Plains region, we found that transverse cracks are widespread on the bottom flanges of those box girders, mainly distributed in the area of 1/4L to 3/4L of the span. Selected cracks were then monitored continuously for one year. Our results showed that there had been no change in the widths of the cracks, but their lengths had increased and new cracks had formed. Taking into consideration factors like hydration reaction, relative humidity difference, shrinkage and creep, sunlight thermal differential effect, sudden temperature change, vehicle load, and their combined efforts, we have developed spatial structural models and conducted stress analyses on the reinforced concrete and prestressed concrete box-girder bridges, respectively. Our numerical analysis results indicated that the hydration reaction is the main reason for the initial bottom flange crack and the temperature difference between the inside and the outside of the box girders caused the crack developments at the later stage.


1993 ◽  
Vol 20 (5) ◽  
pp. 754-759 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
J. Q. Zhao

A layered finite element model with material nonlinearity is developed to trace the nonlinear response of horizontally curved reinforced concrete box-girder bridges. Concrete is treated as an orthotropic nonlinear material and reinforcement is modeled as an elastoplastic strain-hardening material. Due to the fact that the flanges and webs of the structure are much different both in configuration and in the state of stresses, two types of facet shell elements, namely, the triangular generalized conforming element and the rectangular nonconforming element, are adopted to model them separately. A numerical example of a multi-cell box-girder bridge is given and the results are compared favourably with the experimental results previously obtained. Key words: finite element method, curved box-girder bridges, reinforced concrete, nonlinear analysis.


Sign in / Sign up

Export Citation Format

Share Document